
The History of Scheme

Guy Steele
Sun Microsystems Laboratories

October 2006

The History of Scheme

2© 2006 Sun Microsystems, Inc. All rights reserved.

Copyright © 2006 Sun Microsystems, Inc. ("Sun"). All rights are reserved by Sun except as expressly stated as follows.
Permission is given to the 2006 JAOO Conference and its organizers to distribute this work in any form as part of the
conference proceeding materials distributed by it for the 2006 JAOO Conference in Aarhus, Denmark, provided that the
work is distributed in its entirety, including this notice. Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted, provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post
on servers, or to redistribute to lists, requires prior specific written permission of Sun.

The History of Scheme

3© 2006 Sun Microsystems, Inc. All rights reserved.

It Started with Lisp

• Atoms
HELLO FIRST COND 0 27 -13

• Lists
(RED GREEN BLUE)

(THIS IS A LIST OF 7 ATOMS)

(COLORS (RED GREEN BLUE)
 SOUNDS (BUZZ CLANG)
 TASTES (SWEET SOUR SALTY BITTER))
()

(PLUS 3 4)

The History of Scheme

4© 2006 Sun Microsystems, Inc. All rights reserved.

Lists Are a Great Way to Write Code

(PLUS 3 (TIMES 4 5)) evaluates to 23

(DEFINE LENGTH (X)
 (COND ((NULL X) 0)
 (T (PLUS 1 (LENGTH (REST X))))))

(LENGTH (RED GREEN BLUE))
 is an error: no function named RED

(LENGTH (QUOTE (RED GREEN BLUE)))
 evaluates to 3

NOTE: Notation has been modernized for modern audiences!

The History of Scheme

5© 2006 Sun Microsystems, Inc. All rights reserved.

Constructing Lists

(CONS (QUOTE RED) (QUOTE (GREEN BLUE)))
 evaluates to (RED GREEN BLUE)

(CONS (QUOTE RED)
 (CONS (QUOTE GREEN)
 (CONS (QUOTE BLUE)
 (QUOTE ()))))
 evaluates to (RED GREEN BLUE)

(LIST (QUOTE RED)
 (QUOTE GREEN)
 (QUOTE BLUE))
 evaluates to (RED GREEN BLUE)

The History of Scheme

6© 2006 Sun Microsystems, Inc. All rights reserved.

Lambda Expressions as Functions

((LAMBDA (X Y) (LIST X Y X))
 (QUOTE RUN)
 (QUOTE LOLA))
 evaluates to (RUN LOLA RUN)
because when the lambda expression is used as a function,
its body, the expression (LIST X Y X), is evaluated in an
environment in which the value of the parameter X is RUN
and the value of the parameter Y is LOLA

The History of Scheme

7© 2006 Sun Microsystems, Inc. All rights reserved.

Functional Arguments

(DEFINE MAP (FN X)
 (COND ((NULL X) (QUOTE ()))
 (T (CONS (FN (FIRST X))
 (MAP FN (REST X))))))

applies the function FN to each element of the list X
and returns a list of the results

(MAP (QUOTE (LAMBDA (X) (LIST X X)))
 (QUOTE (CHITTY BANG)))
 evaluates to ((CHITTY CHITTY) (BANG BANG))

The History of Scheme

8© 2006 Sun Microsystems, Inc. All rights reserved.

The Evaluator Is Easy to Write in Lisp

(DEFINE EVAL (X ENV)
 (COND ((NUMBERP X) X)
 ((ATOM X) (LOOKUP X ENV))
 ((EQ (FIRST X) (QUOTE QUOTE))
 (SECOND X))
 ((EQ (FIRST X) (QUOTE COND))
 (EVCOND (REST X) ENV))
 (T (APPLY (FIRST FORM)
 (EVLIS (REST FORM)
 ENV)
 ENV))))

The History of Scheme

9© 2006 Sun Microsystems, Inc. All rights reserved.

Representation of Environments

An “environment” is just a list of name-value pairs:
((N 3) (X (RED GREEN BLUE)) (Y HELLO))

We say that the name N is bound to the value 3,
the name X is bound to the value (RED GREEN BLUE),
the name Y is bound to the value HELLO, and so on.

If a name appears more than once, the leftmost pair is used.

(DEFINE LOOKUP (X ENV)
 (COND ((NULL ENV) (ERROR))
 ((EQ (FIRST (FIRST ENV)) X)
 (SECOND (FIRST ENV)))
 (T (LOOKUP X (REST ENV)))))

The History of Scheme

10© 2006 Sun Microsystems, Inc. All rights reserved.

Conditionals and Argument Lists

(DEFINE EVCOND (C ENV)
 (COND ((NULL C) (QUOTE ()))
 ((ATOM (FIRST C)) (ERROR))
 ((EVAL (FIRST (FIRST C)) ENV)
 (EVAL (SECOND (FIRST C)) ENV))
 (T (EVCOND (REST C) ENV))))

(DEFINE EVLIS (X ENV)
 (COND ((NULL X) (QUOTE ()))
 (T (CONS (EVAL (FIRST X) ENV)
 (EVLIS (REST X)
 ENV)))))

The History of Scheme

11© 2006 Sun Microsystems, Inc. All rights reserved.

Applying Functions

(DEFINE APPLY (FN ARGS ENV)
 (COND ((NULL FN) (ERROR))
 ((PRIMOP FN) (PRIMAPP FN ARGS))
 ((ATOM FN)
 (APPLY (LOOKUP FN ENV)
 ARGS ENV))
 ((EQ (FIRST FN) (QUOTE LAMBDA))
 (EVAL (THIRD FN)
 (BIND (SECOND FN)
 ARGS ENV)))
 (T (APPLY (EVAL FN ENV)
 ARGS ENV))))

The History of Scheme

12© 2006 Sun Microsystems, Inc. All rights reserved.

Applying Primitive Functions
(DEFINE PRIMAPP (FN ARGS)
 (COND ((EQ FN (QUOTE FIRST))
 (FIRST (FIRST ARGS)))
 ((EQ FN (QUOTE SECOND))
 (SECOND (FIRST ARGS)))
 ((EQ FN (QUOTE ATOM))
 (ATOM (FIRST ARGS)))
 ((EQ FN (QUOTE CONS))
 (CONS (FIRST ARGS) (SECOND ARGS)))
 ((EQ FN (QUOTE PLUS))
 (PLUS (FIRST ARGS) (SECOND ARGS)))
 ((EQ FN (QUOTE LIST)) ARGS)
 ...))

The History of Scheme

13© 2006 Sun Microsystems, Inc. All rights reserved.

Binding Parameters to Arguments

(DEFINE BIND (PARAMS ARGS ENV)
 (COND ((NULL PARAMS)
 (COND ((NULL ARGS) ENV)
 (T (ERROR))))
 ((NULL ARGS) (ERROR))
 (T (CONS (LIST (FIRST PARAMS)
 (FIRST ARGS))
 (BIND (REST PARAMS)
 (REST ARGS)
 ENV)))))

The History of Scheme

14© 2006 Sun Microsystems, Inc. All rights reserved.

The “Funarg Problem”
(DEFINE MAP (FN X)
 (COND ((NULL X) (QUOTE ()))
 (T (CONS (FN (FIRST X))
 (MAP FN (REST X))))))

(DEFINE CONSALL (X YS)
 (MAP (QUOTE (LAMBDA (Y) (CONS X Y))) YS))

(CONSALL (QUOTE BEAT)
 (QUOTE (HARVARD YALE)))
we expect to get:
 ((BEAT HARVARD) (BEAT YALE))
we actually get:
 (((HARVARD YALE) HARVARD) ((YALE) YALE))

The History of Scheme

15© 2006 Sun Microsystems, Inc. All rights reserved.

Fixing the Evaluator

(DEFINE EVAL (X ENV)
 (COND ((NUMBERP X) X)
 ...
 ((EQ (FIRST X) (QUOTE FUNCTION))
 (LIST (QUOTE FUNARG)
 (SECOND X)
 ENV)))
 ...
 (T (APPLY (FIRST FORM)
 (EVLIS (REST FORM)
 ENV)
 ENV))))

The History of Scheme

16© 2006 Sun Microsystems, Inc. All rights reserved.

Fixing Function Application

(DEFINE APPLY (FN ARGS ENV)
 (COND ((NULL FN) (ERROR))
 ...
 ((EQ (FIRST FN) (QUOTE FUNARG))
 (APPLY (SECOND FN)
 ARGS
 (THIRD FN)))
 ...
 (T (APPLY (EVAL FN ENV)
 ARGS ENV))))

The History of Scheme

17© 2006 Sun Microsystems, Inc. All rights reserved.

The Funarg Solution
(DEFINE MAP (FN X)
 (COND ((NULL X) (QUOTE ()))
 (T (CONS (FN (FIRST X))
 (MAP FN (REST X))))))

(DEFINE CONSALL (X YS)
 (MAP (FUNCTION (LAMBDA (Y) (CONS X Y))) YS))

(CONSALL (QUOTE BEAT)
 (QUOTE (HARVARD YALE)))
we actually get:
 ((BEAT HARVARD) (BEAT YALE))
as desired

The History of Scheme

18© 2006 Sun Microsystems, Inc. All rights reserved.

Objects and Actors

• Inspired in part by SIMULA and Smalltalk, Carl Hewitt
developed a model of computation around “actors”
> Every agent of computation is an actor
> Every datum or data structure is an actor
> An actor may have “acquaintances” (other actors it knows)
> Actors react to messages sent from other actors
> An actor can send messages only to acquaintances

and to actors received in messages

• “You don’t add 3 and 2 to get 5; instead, you send 3
a message asking it to add 2 to itself”

The History of Scheme

19© 2006 Sun Microsystems, Inc. All rights reserved.

Factorial Function in Lisp

(DEFINE FACTORIAL (N)
 (COND ((ZEROP N) 1)
 (T (TIMES N (FACTORIAL
 (DIFFERENCE
 N 1)))))

returns the product of the integers from 1 to N

(FACTORIAL 5)
 evaluates to 120

The History of Scheme

20© 2006 Sun Microsystems, Inc. All rights reserved.

The “Factorial” Actor (1 of 8)

 FACTORIAL

 –
 

 ZEROP

The History of Scheme

21© 2006 Sun Microsystems, Inc. All rights reserved.

The “Factorial” Actor (2 of 8)

 FACTORIAL

 K 5 USER
 –

 
 ZEROP

The History of Scheme

22© 2006 Sun Microsystems, Inc. All rights reserved.

The “Factorial” Actor (3 of 8)

 FACTORIAL

 K 5 USER

 L 1

 5

 –

 

The History of Scheme

23© 2006 Sun Microsystems, Inc. All rights reserved.

The “Factorial” Actor (4 of 8)

 FACTORIAL

 K 5 USER

 L 1

 5

 –

 L

 4

 

The History of Scheme

24© 2006 Sun Microsystems, Inc. All rights reserved.

The “Factorial” Actor (5 of 8)

 FACTORIAL

 K 5 USER

 L 1

 5

 –

 L

 4

 M 4

 

 

The History of Scheme

25© 2006 Sun Microsystems, Inc. All rights reserved.

The “Factorial” Actor (6 of 8)

 FACTORIAL

 K 5 USER

 L 1

 5

 –

 L

 4

 M 4 . . .
 M

 24

 

 

The History of Scheme

26© 2006 Sun Microsystems, Inc. All rights reserved.

The “Factorial” Actor (7 of 8)

 FACTORIAL

 K 5 USER

 L 1

 5

 –

 L

 4

 M 4 . . .
 M

 24

 5

 K 24 

 

 

The History of Scheme

27© 2006 Sun Microsystems, Inc. All rights reserved.

The “Factorial” Actor (8 of 8)

 FACTORIAL

 K 5 USER

 L 1

 5

 –

 L

 4

 M 4 . . .
 M

 24

 5

 K 24 

 K

 120

 . . .

 

 

The History of Scheme

28© 2006 Sun Microsystems, Inc. All rights reserved.

Factorial in the PLASMA Language

Carl had an actors-based language with a difficult syntax,
described with what seemed like difficult terminology.

(define
 [factorial ≡
 (≡≡> (message: [=n] (reply-to: =c))
 (rules n
 (≡> 1 (c <== (message: 1)))
 (else (factorial <==
 (message: (n – 1)
 (reply-to:
 (≡≡> (message: =y)
 (c <== (message: (y * n))))))))))])

From an early working draft,
dated December 1975, of
“Viewing Control Structures as
Patterns of Passing Messages”
by Carl Hewitt; after multiple
revisions, this became MIT AI
Memo 410 in December 1976.

The History of Scheme

29© 2006 Sun Microsystems, Inc. All rights reserved.

Gerry Sussman and I wanted to understand
Carl Hewitt’s ideas,

which seemed to have intellectual power,
but we couldn’t get past the complexity and the notation

to see “what was really going on.”
So we decided to implement a “toy” actors language.

We hoped that it could capture the essence of the ideas
while remaining simple enough to understand.

It might even turn into something useful.

The History of Scheme

30© 2006 Sun Microsystems, Inc. All rights reserved.

A Sequence of AI Languages at MIT

LISP (McCarthy et al., 1958)
METEOR (Bobrow, 1964)

CONVERT (Guzman, 1969)
PLANNER (Hewitt, 1969)

MUDDLE (Sussman, Hewitt, et al., 1970)
MICROPLANNER (Sussman et al., 1971)

CONNIVER (Sussman et al., 1972)
PLASMA (Hewitt et al., 1973)

SCHEMER (Sussman and Steele, 1975)

The History of Scheme

31© 2006 Sun Microsystems, Inc. All rights reserved.

We decided to start with a small Lisp interpreter and
then graft on exactly two more constructs:

a way to make actors and a way to send messages.
Gerry had been studying and teaching Algol 60,

so we decided to use the full funarg solution
so that our toy language would have lexical scope.

Our intuition was that this would also
keep track of actor’s acquaintances correctly.

(Also inspired by Algol 60, the first toy interpreter
was call-by-name rather than call-by-value!

I will gloss over that distinction here.)

The History of Scheme

32© 2006 Sun Microsystems, Inc. All rights reserved.

For making an actor, we chose the syntax
(alpha (parameters) body)

It would be just like a lambda expression, but its body
had to send a message rather than return a value.

For sending messages, we considered
(send actor argument ... argument)

but then realized apply could tell actors from functions
and so we could just use the same keyword-free syntax

for calling functions and sending messages.

The History of Scheme

33© 2006 Sun Microsystems, Inc. All rights reserved.

We would also need some primitive actors.
We decided on (among others):

(* m n k) send product of m and n to actor k
(- m n k) send difference of m and n to actor k
(= m n k q) if m and n equal, send an empty

message to actor k; otherwise send
an empty message to actor q

Note that these actors never return a value.
They always send a message to another actor.

The History of Scheme

34© 2006 Sun Microsystems, Inc. All rights reserved.

 We wanted to try out this definition of factorial:

(define factorial
 (alpha (n c)
 (= n 0
 (alpha () (c 1))
 (alpha ()
 (- n 1
 (alpha (z)
 (factorial z
 (alpha (y)
 (* n y c)))))))))

Note that this was not very different in structure from Carl’s,
but somehow it was much less intimidating to us in the details.

The History of Scheme

35© 2006 Sun Microsystems, Inc. All rights reserved.

 IMPORTANT DISCLAIMER
The original Scheme interpreter was written in a very
machine-language-like style of Lisp so as to expose
every implementation detail. It was very much like

Peter Landin’s SECD machine and did not take
advantage of recursive function calls in the

implementation language.
Here I want to gloss over the implementation details

so as not to obscure the main point of this talk.
Therefore I am going to show you a simplified version

of the interpreter, in the same style as the Lisp
interpreter shown on earlier slides.

The History of Scheme

36© 2006 Sun Microsystems, Inc. All rights reserved.

A Scheme Evaluator
(DEFINE EVAL (X ENV)
 (COND ((NUMBERP X) X)
 ((ATOM X) (LOOKUP X ENV))
 ((EQ (FIRST X) (QUOTE QUOTE))
 (SECOND X))
 ((EQ (FIRST X) (QUOTE COND))
 (EVCOND (REST X) ENV))
 ((EQ (FIRST X) (QUOTE LAMBDA))
 (LIST (QUOTE BETA) X ENV))
 (T ((LAMBDA (EV)
 (APPLY (FIRST EV) (REST EV)))
 (EVLIS FORM ENV)))))

The History of Scheme

37© 2006 Sun Microsystems, Inc. All rights reserved.

Applying Functions
(DEFINE APPLY (FN ARGS ENV)
 (COND ((NULL FN) (ERROR))
 ((PRIMOP FN) (PRIMAPP FN ARGS))
 ((EQ (FIRST FN) (QUOTE BETA))
 (EVAL (THIRD (SECOND FN))
 (BIND (SECOND (SECOND FN))
 ARGS
 (THIRD FN))))
 (T (ERROR))))

Everything else (LOOKUP, EVCOND, EVLIS, PRIMOP,
PRIMAPP, BIND) is the same as before.

The History of Scheme

38© 2006 Sun Microsystems, Inc. All rights reserved.

Sending to Primitive Actors (1 of 2)

(DEFINE PRIMSEND (ACTOR ARGS)
 (COND ((EQ ACTOR (QUOTE *))
 (APPLY (THIRD ARGS)
 (LIST (TIMES
 (FIRST ARGS)
 (SECOND ARGS)))))
 ((EQ ACTOR (QUOTE -))
 (APPLY (THIRD ARGS)
 (LIST (DIFFERENCE
 (FIRST ARGS)
 (SECOND ARGS)))))
 ...

The History of Scheme

39© 2006 Sun Microsystems, Inc. All rights reserved.

Sending to Primitive Actors (2 of 2)

 ...
 ((EQ ACTOR (QUOTE =))
 (APPLY (COND ((EQUAL (FIRST ARGS)
 (SECOND ARGS))
 (THIRD ARGS))
 (T (FOURTH ARGS)))
 (QUOTE ())))
 ...))

The History of Scheme

40© 2006 Sun Microsystems, Inc. All rights reserved.

A Scheme Evaluator with Actors
(DEFINE EVAL (X ENV)
 (COND ((NUMBERP X) X)
 ((ATOM X) (LOOKUP X ENV))
 ((EQ (FIRST X) (QUOTE QUOTE))
 (SECOND X))
 ((EQ (FIRST X) (QUOTE COND))
 (EVCOND (REST X) ENV))
 ((EQ (FIRST X) (QUOTE LAMBDA))
 (LIST (QUOTE BETA) X ENV))
 ((EQ (FIRST X) (QUOTE ALPHA))
 (LIST (QUOTE GAMMA) X ENV))
 (T ((LAMBDA (EV)
 (APPLY (FIRST EV) (REST EV)))
 (EVLIS FORM ENV)))))

The History of Scheme

41© 2006 Sun Microsystems, Inc. All rights reserved.

Sending Messages to Actors
(DEFINE APPLY (FA ARGS ENV)
 (COND ((NULL FA) (ERROR))
 ((PRIMOP FA) (PRIMAPP FA ARGS))
 ((PRIMACTOR FA) (PRIMSEND FA ARGS))
 ...
 ((EQ (FIRST FA) (QUOTE GAMMA))
 (EVAL (THIRD (SECOND FA))
 (BIND (SECOND (SECOND FA))
 ARGS
 (THIRD FA))))
 (T (ERROR))))

The History of Scheme

42© 2006 Sun Microsystems, Inc. All rights reserved.

Now evaluating the message send

(factorial 5 fred)

results in sending a message containing 120
to the actor named fred.

Oh, joy!

The History of Scheme

43© 2006 Sun Microsystems, Inc. All rights reserved.

A Startling Equivalence
(DEFINE APPLY (FA ARGS ENV)
 (COND ...
 ((EQ (FIRST FA) (QUOTE BETA))
 (EVAL (THIRD (SECOND FA))
 (BIND (SECOND (SECOND FA))
 ARGS
 (THIRD FA))))
 ((EQ (FIRST FA) (QUOTE GAMMA))
 (EVAL (THIRD (SECOND FA))
 (BIND (SECOND (SECOND FA))
 ARGS
 (THIRD FA))))
 (T (ERROR))))

The History of Scheme

44© 2006 Sun Microsystems, Inc. All rights reserved.

An Astonishing Conclusion
Actor constructors and lambda expressions

in our toy language are operationally equivalent.

Does it follow that actors are “merely” functions
in a tail-recursive, lexically scoped language?

They are the same mechanism.
Any difference is not inherent, but depends only

on what you put in their bodies.

If your primitive operators are functions,
you will tend to write programs in a functional style.

If your primitive operators are actors,
you will tend to write programs in an actor style.

The History of Scheme

45© 2006 Sun Microsystems, Inc. All rights reserved.

A New Language Is Born
After some discussion, Carl Hewitt agreed with our

conclusions (with two minor exceptions).

In a way, this ended the “language competition.”

Our great new AI language “Schemer” turned out to be
a small dialect of Lisp with some nice properties.

Oh, yes: the name?

File names in that OS were limited to 6 characters.

“SCHEME”

The History of Scheme

46© 2006 Sun Microsystems, Inc. All rights reserved.

Success

I wrote a compiler for Scheme (called Rabbit).

Soon, other people built much better
implementations of Scheme.

Lots of other people found it useful.

The Scheme standard is in its sixth revision.

Very few people bother to cite our papers anymore.

We are delighted.

guy.steele@sun.com

