
Project 1: A Lisp Interpreter

A tiny Lisp-subset interpreter written in C is available in the file ~cs61c/lib/lisp.c.
Your job is to extend the interpreter. Part of the object of this exercise is for you to be
sure to learn any C details needed for the project that you haven’t learned already, so ask
questions if necessary.

1. Add a symbol table so that eval can look up the values of symbols. (Since there are
no user-defined procedures in this Lisp, all symbols will be global.) Use an appropriate
searchable data structure from 61B; it needn’t be the fastest possible.

2. Modify eval so that the operator (first) subexpression of a compound expression is
evaluated recursively, as the argument subexpressions already are. Invent a primitive-
procedure data type in addition to the data types symbol, number, pair, and niltype; put
the primitives in the initial symbol table. [The interpreter as it exists now doesn’t look up
primitives in the symbol table; it has their names built in, as if they were special forms.
But you’ll change this, so that procedures are first-class values, as in Scheme.] When
you’ve done this, the interpreter should be able to evaluate an expression such as
((car (cdr (cons 3 (cons + ’foo)))) 4 5)

Hint: Your representation for a primitive might include the number of arguments expected
as well as a pointer to the C procedure that carries it out.

3. Add the define special form to add an entry to the symbol table, e.g.,
(define x (+ 2 3))

would add an entry with the name x and the value 5. It should return the name of the
defined symbol (x in this example).

4. Add a vector (array) data type. For this data type, the struct thing should include a
pointer to a dynamically-allocated block of storage just large enough for the array, and a
number indicating the length of the array. The elements of the array should be pointers to
things. The reader should recognize the notation #(4 5 foo baz) to represent a vector,
and should allocate (for this example) an array of length four. The printer should know
how to print vectors, too. The elements of a vector can be of any type, of course, including
lists and vectors. Also implement the following primitives:
(make-vector length) returns a vector of length empty lists
(vector-ref vector index) returns the indexth element
(vector-set! vector index value) changes the element’s value

5. Optional — for fun, not for credit! Don’t do this until the rest of the project
is completed. Add user-defined procedures. To do this, create a new USERPROC type that
includes the procedure’s text and its defining environment. Add a lambda special form
to create user procedures. The text of the procedure is just the lambda expression (or its
cdr, if you prefer, leaving out the word lambda itself). An environment is a list of frames,
where each frame is a symbol table like the one you created earlier. Modify the symbol

1



lookup routine to handle a list of symbol tables. Then you have to write apply so that for
user-defined procedures it extends the procedure’s defining environment with a new frame
in which the procedure’s formal parameters are bound to the calling expression’s actual
argument values, and you have to write eval-sequence that evaluates the procedure’s
body. (Actually, since we have no primitives with side effects — no mutation, for example
— you could get away with only allowing one expression in the body.) Basically you are
redoing the metacircular evaluator from chapter 4 of SICP, but writing in C instead of in
Scheme. This really isn’t hard if you remember 61A!

2


