
Higher-Order and Symbolic Computation, 11, 405–439 (1998)
c⃝ 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Scheme:
A Interpreter for Extended Lambda Calculus
GERALD JAY SUSSMAN gjs@mit.edu
Massachusetts Institute of Technology, 545 Tech Square, Room 428, Cambridge, MA 02139, USA

GUY L. STEELE JR. guy.steele@east.sun.com
Sun Microsystems Labs, 2 Elizabeth Drive, MS UCHL03-207, Chelmsford, MA 01824, USA

Abstract. Inspired byACTORS [7, 17], we have implemented an interpreter for a LISP-like language, SCHEME,
based on the lambda calculus [2], but extended for side effects, multiprocessing, and process synchronization.
The purpose of this implementation is tutorial. We wish to:
1. alleviate the confusion caused by Micro-PLANNER, CONNIVER, etc., by clarifying the embedding of

non-recursive control structures in a recursive host language like LISP.
2. explain how to use these control structures, independent of such issues as pattern matching and data base

manipulation.
3. have a simple concrete experimental domain for certain issues of programming semantics and style.
This paper is organized into sections. The first section is a short “reference manual” containing specifications
for all the unusual features of SCHEME. Next, we present a sequence of programming examples which illustrate
various programming styles, and how to use them. This will raise certain issues of semantics which we will try
to clarify with lambda calculus in the third section. In the fourth section we will give a general discussion of the
issues facing an implementor of an interpreter for a language based on lambda calculus. Finally, we will present a
completely annotated interpreter for SCHEME, written in MacLISP [13], to acquaint programmers with the tricks
of the trade of implementing non-recursive control structures in a recursive language like LISP.
This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of

Technology. Support for the laboratory’s artificial intelligence research is provided in part by the Advanced
Research Projects Agency of the Department of Defense under Office of Naval Research contract N00014-75-C-
0643.

1. The SCHEME Reference Manual

SCHEME is essentially a full-funarg LISP. LAMBDA expressions need not be QUOTEd,
FUNCTIONed, or *FUNCTIONed when passed as arguments or returned as values; they
will evaluate to closures of themselves.
All LISP functions (i.e., EXPRs, SUBRs, and LSUBRs, but not FEXPRs, FSUBRs, or MACROs)

are primitive operators in SCHEME, and have the same meaning as they have in LISP. Like
LAMBDA expressions, primitive operators and numbers are self-evaluating (they evaluate to
trivial closures of themselves).
There are a number of special primitives known as AINTs which are to SCHEME as

FSUBRs are to LISP. We will enumerate them here.

IF This is the primitive conditional operator. It takes three arguments. If the first evaluates
to non-NIL, it evaluates the second expression, and otherwise the third.

QUOTE As in LISP, this quotes the argument form so that it will be passed verbatim as
data. The abbreviation “’FOO” may be used instead of “(QUOTE FOO)”.

Sussman & Steele 1998

406 SUSSMAN AND STEELE

DEFINE This is analogous to the MacLISP DEFUN primitive (but note that the LAMBDA
must appear explicitly!). It is used for defining a function in the “global environment”
permanently, as opposed toLABELS (see below), which is used for temporary definitions
in a local environment. DEFINE takes a name and a lambda expression; it closes the
lambda expression in the global environment and stores the closure in the LISP value
cell of the name (which is a LISP atom).

LABELS We have decided not to use the traditional LABEL primitive in this interpreter
because it is difficult to define several mutually recursive functions using only LABEL.
The solution, which Hewitt [17] also uses, is to adopt an ALGOLesque block syntax:

(LABELS <function definition list> <expression>)

This has the effect of evaluating the expression in an environmentwhere all the functions
are defined as specified by the definitions list. Furthermore, the functions are themselves
closed in that environment, and not in the outer environment; this allows the functions
to call themselves and each other recursively. For example, consider a function which
counts all the atoms in a list structure recursively to all levels, but which doesn’t count
the NILs which terminate lists (but NILs in the CAR of some list count). In order to
perform this we use two mutually recursive functions, one to count the car and one to
count the cdr, as follows:

(DEFINE COUNT
(LAMBDA (L)

(LABELS ((COUNTCAR
(LAMBDA (L)

(IF (ATOM L) 1
(+ (COUNTCAR (CAR L))

(COUNTCDR (CDR L))))))
(COUNTCDR
(LAMBDA (L)

(IF (ATOM L)
(IF (NULL L) 0 1)
(+ (COUNTCAR (CAR L))

(COUNTCDR (CDR L)))))))
(COUNTCDR L)))) ;Note: COUNTCDR is defined here.

ASET This is the side effect primitive. It is analogous to the LISP function SET. For
example, to define a cell [17], we may use ASET as follows:

(DEFINE CONS-CELL
(LAMBDA (CONTENTS)

(LABELS ((THE-CELL
(LAMBDA (MSG)

(IF (EQ MSG ’CONTENTS?) CONTENTS
(IF (EQ MSG ’CELL?) ’YES

(IF (EQ (CAR MSG) ’<-)
(BLOCK (ASET ’CONTENTS (CADR MSG))

THE-CELL)
(ERROR ’|UNRECOGNIZED MESSAGE - CELL|

MSG
’WRNG-TYPE-ARG)))))))

THE-CELL)))

INTERPRETER FOR EXTENDED LAMBDA CALCULUS 407

Those of you who may complain about the lack of ASETQ are invited to write (ASET’
foo bar) instead of (ASET ’foo bar).

EVALUATE This is similar to the LISP function EVAL. It evaluates its argument, and then
evaluates the resulting s-expression as SCHEME code.

CATCH This is the “escape operator” which gives the user a handle on the control structure
of the interpreter. The expression:

(CATCH <identifier> <expression>)

evaluates <expression> in an environment where <identifier> is bound to a con-
tinuation which is “just about to return from the CATCH”; that is, if the continuation is
called as a function of one argument, then control proceeds as if the CATCH expression
had returned with the supplied (evaluated) argument as its value. For example, con-
sider the following obscure definition of SQRT (Sussman’s favorite style/Steele’s least
favorite):

(DEFINE SQRT
(LAMBDA (X EPSILON)

((LAMBDA (ANS LOOPTAG)
(CATCH RETURNTAG

(PROGN
(ASET ’LOOPTAG (CATCH M M)) ;CREATE PROG TAG
(IF (< (ABS (-$ (*$ ANS ANS) X)) EPSILON)

(RETURNTAG ANS) ;RETURN
NIL) ;JFCL

(ASET ’ANS (//$ (+$ (//$ X ANS) ANS) 2.0))
(LOOPTAG LOOPTAG)))) ;GOTO

1.0
NIL)))

Anyone who doesn’t understand how this manages to work probably should not attempt
to use CATCH.1

As another example, we can define a THROW function, which may then be used with
CATCH much as they are in LISP:

(DEFINE THROW (LAMBDA (TAG RESULT) (TAG RESULT)))

CREATE!PROCESS This is the process generator for multiprocessing. It takes one argu-
ment, an expression to be evaluated in the current environment as a separate parallel
process. If the expression ever returns a value, the process automatically terminates.
The value of CREATE!PROCESS is a process id for the newly generated process. Note
that the newly created process will not actually run until it is explicitly started.

START!PROCESS This takes one argument, a process id, and starts up that process. It
then runs.

408 SUSSMAN AND STEELE

STOP!PROCESS This also takes a process id, but stops the process. The stopped process
may be continued from where it was stopped by using START!PROCESS again on
it. The magic global variable **PROCESS** always contains the process id of the
currently running process; thus a process can stop itself by doing (STOP!PROCESS
PROCESS). A stopped process is garbage collected if no live process has a pointer
to its process id.

EVALUATE!UNINTERRUPTIBLY This is the synchronization primitive. It evaluates an
expression uninterruptibly; i.e., no other process may run until the expression
has returned a value. Note that if a funarg is returned from the scope of an
EVALUATE!UNINTERRUPTIBLY, then that funarg will be uninterruptible when it is
applied; that is, the uninterruptibility property follows the rules of variable scoping.
For example, consider the following function:

(DEFINE SEMGEN
(LAMBDA (SEMVAL)

(LIST (LAMBDA ()
(EVALUATE!UNINTERRUPTIBLY

(ASET’ SEMVAL (+ SEMVAL 1))))
(LABELS (P (LAMBDA ()

(EVALUATE!UNINTERRUPTIBLY
(IF (PLUSP SEMVAL)

(ASET’ SEMVAL (- SEMVAL 1))
(P)))))

P))))

This returns a pair of functions which are V and P operations on a newly created
semaphore. The argument to SEMGEN is the initial value for the semaphore. Note that
P busy-waits by iterating if necessary; because EVALUATE!UNINTERRUPTIBLY uses
variable-scoping rules, other processes have a chance to get in at the beginning of each
iteration. This busy-wait can be made much more efficient by replacing the expression
(P) in the definition of P with

((LAMBDA (ME)
(BLOCK (START!PROCESS (CREATE!PROCESS ’(START!PROCESS ME)))

(STOP!PROCESS ME)
(P)))

PROCESS)

Let’s see you figure this one out! Note that a STOP!PROCESS within an EVALUATE!
UNINTERRUPTIBLY forces the process to be swapped out even if it is the current one,
and so other processes get to run; but as soon as it gets swapped in again, others are
locked out as before.
Besides the AINTs, SCHEME has a class of primitives known as AMACROs These are
similar toMacLISP MACROs, in that they are expanded into equivalent code before being
executed. Some AMACROs supplied with the SCHEME interpreter:

INTERPRETER FOR EXTENDED LAMBDA CALCULUS 409

COND This is like the MacLISP COND statement, except that singleton clauses (where the
result of the predicate is the returned value) are not allowed.

AND, OR These are also as in MacLISP.

BLOCK This is like theMacLISP PROGN, but arranges to evaluate its last argument without
an extra net control frame (explained later), so that the last argument may involved in
an iteration. Note that in SCHEME, unlike MacLISP, the body of a LAMBDA expression
is not an implicit PROGN.2

DO This is like the MacLISP “new-style” DO; old-style DO is not supported.

AMAPCAR, AMAPLIST These are like MAPCAR and MAPLIST, but they expect a SCHEME
lambda closure for the first argument.

To use SCHEME, simply incant at DDT (on MIT-AI):3

:LISP LIBLSP;SCHEME

which will load up the current version of SCHEME, which will announce itself and give a
prompt. If you want to escape to LISP, merely hit ^G. To restart SCHEME, type (SCHEME).
Sometimes one does need to use a LISP FSUBR such as UREAD; this may be accomplished
by typing, for example,4

(EVAL’ (UREAD FOO BAR DSK LOSER))

After doing this, typing ^Q will, of course, cause SCHEME to read from the file.
This concludes the SCHEME Reference Manual.

2. Some SCHEME Programming Examples

2.1. Traditional Recursion

Here is the good old familiar recursive definition of factorial, written in SCHEME.

(DEFINE FACT
(LAMBDA (N) (IF (= N 0) 1

(* N (FACT (- N 1))))))

2.2. What About Iteration?

There are many other ways to compute factorial. One important way is through the use of
iteration. Consider the following definition of FACT. Although it appears to be recursive,
since it “calls itself,” it captures the essence of our intuitive notion of iteration, because
execution of this program will not produce internal structures (e.g., stacks or variable
bindings) which increase in size with the number of iteration steps. This surprising fact
will be explained in two ways.
(1) We will consider programming styles in terms of substitution semantics of the lambda

calculus (Section 3).
(2) We will show how the SCHEME interpreter is implemented (Sections 4, 5).

410 SUSSMAN AND STEELE

(DEFINE FACT
(LAMBDA (N)

(LABELS ((FACT1 (LAMBDA (M ANS)
(IF (= M 0) ANS

(FACT1 (- M 1)
(* M ANS))))))

(FACT1 N 1))))

A common iterative construct is the DO loop. The most general form we have seen in any
programming language is the MacLISP DO [13]. It permits the simultaneous initialization
of any number of control variables and the simultaneous stepping of these variables by
arbitrary functions at each iteration step. The loop is terminated by an arbitrary predicate,
and an arbitrary valuemay be returned. The DO loopmay have a body, a series of expressions
executed for effect on each iteration.
The general form of a MacLISP DO is:

(DO ((<var1> <init1> <step1>)
(<var2> <init2> <step2>)
...
(<varn> <initn> <stepn>))
(<pred> <value>)
<body>)

The semantics of this are that the variables are bound and initialized to the values of the
<initi> expressions, which must all be evaluated in the environment outside the DO; then
the predicate <pred> is evaluated in the new environment, and if TRUE, the <value> is
evaluated and returned. Otherwise the body is evaluated, then each of the steppers <stepi>
is evaluated in the current environment, all the variables made to have the results as their
values, and the predicate evaluated again, and so on.
For example, the following MacLISP function:

(DEFUN REV (L)
(DO ((L1 L (CDR L1))

(ANS NIL (CONS (CAR L1) ANS)))
((NULL L1) ANS)))

computes the reverse of a list. In SCHEME, we could write the same function, in the same
iterative style, as follows:

(DEFINE REV
(LAMBDA (L)

(LABELS ((DOLOOP (LAMBDA (L1 ANS)
(IF (NULL L1) ANS

(DOLOOP (CDR L1)
(CONS (CAR L1) ANS))))))

(DOLOOP L NIL))))

From this we can infer a general way to express iterations in SCHEME in a manner
isomorphic to the MacLISP DO:

INTERPRETER FOR EXTENDED LAMBDA CALCULUS 411

(LABELS ((DOLOOP
(LAMBDA (<dummy> <var1> <var2> ... <varn>)

(IF <pred> <value>
(DOLOOP <body> <step1> <step2> ... <stepn>)))))

(DOLOOP NIL <init1> <init2> ... <initn>))

This is in fact what the supplied DO AMACRO expands into. Note that there are no side
effects in the steppings of the iteration variables.

2.3. Another Way To Do Recursion

Now consider the following alternative definition of FACT. It has an extra argument, the
continuation [16], which is a function to call with the answer, when we have it, rather than
return a value; that is, rather than ultimately reducing to the desired value, it reduces to a
combination which is the application of the continuation to the desired value.

(DEFINE FACT
(LAMBDA (N C)

(IF (= N 0) (C 1)
(FACT (- N 1)

(LAMBDA (A) (C (* N A)))))))

Note that we can call this like an ordinary function if we supply (LAMBDA (X) X) as
the second argument. For example, (FACT 3 (LAMBDA (X) X)) returns 6.

2.4. Apparently “Hairy” Control Structure

A classic problem difficult to solve in most programming languages, including standard
(stack-oriented) LISP, is the samefringe problem [17]. The problem is to determine whether
the fringes of two trees are the same, even if the internal structures of the trees are not. This
problem is easy to solve if one merely computes the fringe of each tree separately as a list,
and then compares the two lists. We would like to solve the problem so that the fringes are
generated and compared incrementally. This is important if the fringes of the trees are very
large, but differ, say, in the first position.
Consider the following obscure solution to samefringe, which is in fact isomorphic to the

one written by Shrobe and presented by Smith and Hewitt. Note that SCHEME does not
have the packagers of PLASMA, and so we were forced to use continuations; rather than
using packages and a next operator, we pass a fringe a continuation (called the “getter”)
which will get the next and the rest of the fringe as its two arguments

(DEFINE FRINGE
(LAMBDA (TREE)

(LABELS ((FRINGEN
(LAMBDA (NODE ALT)

(LAMBDA (GETTER)
(IF (ATOM NODE)

(GETTER NODE ALT)

412 SUSSMAN AND STEELE

((FRINGEN (CAR NODE)
(LAMBDA (GETTER1)

((FRINGEN (CDR NODE)
ALT)

GETTER1)))
GETTER))))))

(FRINGEN TREE
(LAMBDA (GETTER)

(GETTER ’(EXHAUSTED) NIL))))))

(DEFINE SAMEFRINGE
(LAMBDA (TREE1 TREE2)

(LABELS ((SAME
(LAMBDA (S1 S2)

(S1 (LAMBDA (X1 R1)
(S2 (LAMBDA (X2 R2)

(IF (EQUAL X1 X2)
(IF (EQUAL X1 ’(EXHAUSTED))

T
(SAME R1 R2))

NIL))))))))
(SAME (FRINGE TREE1)

(FRINGE TREE2)))))

Now let us consider an alternative solution to the samefringe problem. We believe that
this solution is clearer for two reasons:

1. the implementation of SAMEFRINGE is more clearly iterative;

2. rather than returning an object which will return both the first and the rest of a fringe
to a given continuation, FRINGE returns an object which will deliver up a component
in response to a request for that component.

(DEFINE FRINGE
(LAMBDA (TREE)

(LABELS ((FRINGE1
(LAMBDA (NODE ALT)

(IF (ATOM NODE)
(LAMBDA (MSG)

(IF (EQ MSG ’FIRST) NODE
(IF (EQ MSG ’NEXT) (ALT) (ERROR))))

(FRINGE1 (CAR NODE)
(LAMBDA ()

(FRINGE1 (CDR NODE) ALT)))))))
(FRINGE1 TREE

(LAMBDA ()
(LAMBDA (MSG)

(IF (EQ MSG ’FIRST) ’*EOF* (ERROR))))))))

(DEFINE SAMEFRINGE

INTERPRETER FOR EXTENDED LAMBDA CALCULUS 413

(LAMBDA (T1 T2)
(DO ((C1 (FRINGE T1) (C1 ’NEXT))

(C2 (FRINGE T2) (C2 ’NEXT)))
((OR (NOT (EQ (C1 ’FIRST) (C2 ’FIRST)))

(EQ (C1 ’FIRST) ’*EOF*)
(EQ (C2 ’FIRST) ’*EOF*))

(EQ (C1 ’FIRST) (C2 ’FIRST))))))

A much simpler and more probable problem is that of building a pattern matcher with
backtracking for segment matches. The matcher presented below is intended for matching
single-level list structure patterns against lists of atoms. A pattern is a list containing three
types of elements:

1. constant atoms, which match themselves only.

2. (THV x), which matches any single element in the expression consistently. We may
abbreviate this as ?x by means of a LISP reader macro character.5

3. (THV* x), which matches any segment of zero or more elements in the expression
consistently. We may abbreviate this as !x.

The matcher returns either NIL, meaning no match is possible, or a list of two items, an alist
specifying the bindings of the match variables, and a continuation to call, if you don’t like
this particular set of bindings, which will attempt to find another match. Thus, for example,
the invocation

(MATCH ’(A !B ?C ?C !B !E)
’(A X Y Q Q X Y Z Z X Y Q Q X Y R))

would return the result

(((E (Z Z X Y Q Q X Y R))
(C Q)
(B X Y))
<continuation1>)

where calling <continuation1> as a function of no arguments would produce the result

(((E (R))
(C Z)
(B (X Y Q Q X Y)))

<continuation2>)

where calling <continuation2> would produce NIL.
The MATCH function makes use of two auxiliary functions called NFIRST and NREST. The

former returns a list of the first n elements of a given list, while the latter returns the tail of
the given list after the first n elements.

414 SUSSMAN AND STEELE

(DEFINE NFIRST
(LAMBDA (E N)

(IF (= N 0) NIL
(CONS (CAR E) (NFIRST (CDR E) (- N 1))))))

(DEFINE NREST
(LAMBDA (E N)

(IF (= N 0) E
(NREST (CDR E) (- N 1)))))

The main MATCH function also uses a subfunction called MATCH1 which takes four argu-
ments: the tail of the pattern yet to be matched; the tail of the expression yet to be matched;
the alist of match bindings made so far; and a continuation to call if the match fails at
this point. A subfunction of MATCH, called MATCH*, handles the matching of segments of
the expression against THV* match variables. It is in the matching of segments that the
potential need for backtracking enters, for segments of various lengths may have to be tried.
After MATCH*matches a segment, it calls MATCH1 to continue the match, giving it a failure
continuation which will back up and try to match a longer segment if possible. A failure
can occur if a constant fails to match, or if one or the other of pattern and expression runs
out before the other one does.

(DEFINE MATCH
(LAMBDA (PATTERN EXPRESSION)
(LABELS ((MATCH1
(LAMBDA (P E ALIST LOSE)
(IF (NULL P)

(IF (NULL E) (LIST ALIST LOSE) (LOSE))
(IF (ATOM (CAR P))

(IF (NULL E) (LOSE)
(IF (EQ (CAR E) (CAR P))

(MATCH1 (CDR P) (CDR E) ALIST LOSE)
(LOSE)))

(IF (EQ (CAAR P) ’THV)
(IF (NULL E) (LOSE)

((LAMBDA (V)
(IF V (IF (EQ (CAR E) (CADR V))

(MATCH1 (CDR P) (CDR E) ALIST LOSE)
(LOSE))

(MATCH1 (CDR P) (CDR E)
(CONS (LIST (CADAR P) (CAR E)) ALIST)
LOSE)))

(ASSQ (CADAR P) ALIST)))
(IF (EQ (CAAR P) ’THV*)

((LAMBDA (V)
(IF V

(IF (< (LENGTH E) (LENGTH (CADR V))) (LOSE)
(IF (EQUAL (NFIRST E (LENGTH (CADR V)))

(CADR V))
(MATCH1 (CDR P)

(NREST E (LENGTH (CADR V)))
ALIST
LOSE)

(LOSE)))

INTERPRETER FOR EXTENDED LAMBDA CALCULUS 415

(LABELS ((MATCH*
(LAMBDA (N)
(IF (> N (LENGTH E)) (LOSE)

(MATCH1 (CDR P) (NREST E N)
(CONS (LIST (CADAR P)

(NFIRST E N))
ALIST)

(LAMBDA ()
(MATCH* (+ N 1))))))))

(MATCH* 0))))
(ASSQ (CADAR P) ALIST))
(LOSE))))))))

(MATCH1 PATTERN
EXPRESSION
NIL
(LAMBDA () NIL)))))

2.5. A Useless Multiprocessing Example

One thing we might want to use multiprocessing for is to try two things in parallel, and
terminate as soon as one succeeds. We can do this with the following function.

(DEFINE TRY!TWO!THINGS!IN!PARALLEL
(LAMBDA (F1 F2)

(CATCH C
((LAMBDA (P1 P2)

((LAMBDA (F1 F2)
(EVALUATE!UNINTERRUPTIBLY

(BLOCK (ASET ’P1 (CREATE!PROCESS ’(F1)))
(ASET ’P2 (CREATE!PROCESS ’(F2)))
(START!PROCESS P1)
(START!PROCESS P2)
(STOP!PROCESS **PROCESS**))))

(LAMBDA()
((LAMBDA (VALUE)

(EVALUATE!UNINTERRUPTIBLY
(BLOCK (STOP!PROCESS P2) (C VALUE))))

(F1)))
(LAMBDA ()

((LAMBDA (VALUE)
(EVALUATE!UNINTERRUPTIBLY

(BLOCK (STOP!PROCESS P1) (C VALUE))))
(F2)))))

NIL NIL))))

TRY!TWO!THINGS!IN!PARALLEL takes two functions of no arguments (in order to pass an
unevaluated expression and its environment in for later use, so as to avoid variable conflicts).
It creates two processes to run them, and returns the value of whichever completes first.
As an example of how to misuse TRY!TWO!THINGS!IN!PARALLEL, here is a function

which determines the sign of an integer using only ADD1, SUB1, and EQUAL.

416 SUSSMAN AND STEELE

(DEFINE SIGN
(LAMBDA (N)

(IF (EQUAL N 0) ’ZERO
(TRY!TWO!THINGS!IN!PARALLEL

(LAMBDA ()
(DO ((I 0 (ADD1 I)))

((EQUAL I N) ’POSITIVE)))
(LAMBDA ()

(DO ((I 0 (SUB1 I)))
((EQUAL I N) ’NEGATIVE)))))))

3. Substitution Semantics and Programming Styles

In the previous section we showed several different SCHEME programs for computing
the factorial function. How are they different? We intuitively distinguish recursive from
iterative programs, for example, by noting that recursive programs “call themselves” but in
the last section we claimed to do iteration with a seemingly recursive program. Experienced
programmers “know” that recursion uses up “stack” so a program implemented recursively
will run out of stack on a sufficiently large problem. Can wemake these ideas more precise?
One traditional approach is to model the computation with lambda calculus.

3.1. Reviewing the Lambda Calculus

Traditionally language constructs are broken up into two distinct classes: imperative
constructs and those with side-effects—such as assignment and go-to; and applicative
constructs—those executed for value—such as arithmetic expressions. In addition, com-
piled languages often require a third class, declarative constructs, but these are provided
primarily to guide the compilation process and do not directly affect the semantics of exe-
cution, and so will not concern us here.
Lambda calculus is a model for the applicative component of programming languages. It

models all non-imperative constructs as applications of functions and specifies the semantics
of such expressions by a set of axioms or rewrite rules. One axiom states that a combination,
i.e., an expression formed by a function applied to some arguments, is equivalent to the
body of that function with the appropriate arguments substituted for the free occurrences
of the formal parameters of the function in its body:

((LAMBDA <vars> <body) <args>) = Subst[<args> <vars> <body>]

Another axiom requires that the meaning of an expression be independent of the names
of the formal parameters bound in the expression:

(LAMBDA <vars> <body>) = (LAMBDA <newvars> Subst[<newvars> <vars> <body>])

provided that none of <newvars> appears free in <body>.
These constraints force Subst to be defined in such a way that an important kind of

referential transparency is obtained. Besides these “structural” axioms, others are provided
which specify the result of certain primitive functions applied to specific arguments. We

INTERPRETER FOR EXTENDED LAMBDA CALCULUS 417

shall not be concerned with these problems here—we will assume a small reasonable set
of primitive functions.

3.2. Recursive programs

Now, let’s see how lambda calculus may be used (informally) to model a computation.
Consider the standard definition of the factorial function:

(DEFINE FACT
(LAMBDA (N) (IF (= N 0) 1

(* N (FACT (- N 1))))))

We are being very informal—lambda calculus as presented byChurch [2] does not include
such constucts as DEFINE, IF, or =, *, or even 1! The “usual” lambda calculus construct
for defining recursive functions is a rather obscure object called the “fixed-point” operator.
We have been lax to avoid the hassle of “rigor mortis” in this tutorial paper. Similarly, IF
is the SCHEME conditional construct we will use for convenience; it reduces to its second
or third argument depending on whether the first reduces to TRUE or FALSE. The objects
*, =, 0, 1, etc., may be thought of as abbreviations for complex lambda expressions (such
as Church numerals) whose details we are not interested in. On the other hand, we may
think of them as primitive expressions, defined by additional axioms; this viewpoint leads
to practical interpreter implementations.
Now let’s reduce the expression (FACT 3). We will perform the expression reductions,

except for the IF primitive, in ApplicativeOrder (call by value), though this is not necessary,
as we will discuss later. We display a “trace” of the substitutions:

=> (FACT 3)
=> (IF (= 3 0) 1 (* 3 (FACT (- 3 1))))
=> (* 3 (FACT (- 3 1)))
=> (* 3 (FACT 2))
=> (* 3 (IF (= 2 0) 1 (* 2 (FACT (- 2 1)))))
=> (* 3 (* 2 (FACT (- 2 1))))
=> (* 3 (* 2 (FACT 1)))
=> (* 3 (* 2 (IF (= 1 0) 1 (* 1 (FACT (- 1 1))))))
=> (* 3 (* 2 (* 1 (FACT (- 1 1)))))
=> (* 3 (* 2 (* 1 (FACT 0))))
=> (* 3 (* 2 (* 1 (IF (= 0 0) 1 (* 0 (FACT (- 0 1)))))))
=> (* 3 (* 2 (* 1 1)))
=> (* 3 (* 2 1))
=> (* 3 2)
=> 6

You will note that we have calculated (fact 3) by a process wherein each expression
is replaced by an expression which is provably equivalent to it via an axiom or which is
produced by application of a primitive function.

418 SUSSMAN AND STEELE

3.3. Now, What About Iteration?

Consider the “iterative” definition of FACT. Although it appears to be recursive, since it
“calls itself”, we will see that it captures the essence of our intuitive notion of iteration.

(DEFINE FACT
(LAMBDA (N)

(LABELS ((FACT1
(LAMBDA (M ANS)

(IF (= M 0) ANS
(FACT1 (- M 1) (* M ANS))))))

(FACT1 N 1))))

Let us now compute (fact 3).

=> (FACT 3)
=> (FACT1 3 1)
=> (IF (= 3 0) 1

(FACT1 (- 3 1) (* 3 1)))
=> (FACT1 (- 3 1) (* 3 1))
=> (FACT1 2 (* 3 1))
=> (FACT1 2 3)
=> (IF (= 2 0) 3

(FACT1 (- 2 1) (* 2 3)))
=> (FACT1 (- 2 1) (* 2 3))
=> (FACT1 1 (* 2 3))
=> (FACT1 1 6)
=> (IF (= 1 0) 6

(FACT1 (- 1 1) (* 1 6)))
=> (FACT1 (- 1 1) (* 1 6))
=> (FACT1 0 (* 1 6))
=> (FACT1 0 6)
=> (IF (= 0 0) 6

(FACT1 (- 0 1) (* 0 6)))
=> 6

Notice that the expressions involved have a fixed maximum size independent of the
argument to FACT! In fact, as Marvin Minsky pointed out, successive reductions produce
a cycle of expressions which are identical except for the numerical quantities involved.
Looking back, wemay note byway of comparison that the recursive version caused creation
of expressions proportional in size to the argument. This is why we think that this version
of FACT is iterative rather than recursive. At each stage of the iterative version the “state” of
the computation is summarized in two variables, the counter and the answer accumulator,
while at each stage of the recursive version the “state” contains a chain of pieces each of
which contains a component of the state. In the recursive version of FACT, for example,
the state contains the sequence of multiplications to be performed upon return from the
bottom. It is true that the iterative factorial also can produce expressions of arbitrary size,
since the number of bits needed to express factorial of n grows with n; but this is a property
of the numbers calculated by the function which is implemented in iterative style, and

INTERPRETER FOR EXTENDED LAMBDA CALCULUS 419

not of the iterative control structure itself. A recursive control structure inherently creates
expressions of unbounded size as a function of the recursion depth, while an iterative
control structure produces a cycle of equivalent expressions, and so the expressions are
of approximately the same size no matter how many iteration steps are taken. This is the
essence of the difference between the notions of iteration and recursion. Hewitt [15, p. 234]
made a similar observation in passing, expressing the difference in terms of storage used in
program execution rather than in terms of intermediate expressions produced by substitution
semantics.

3.4. Continuation Passing Recursion

Remember the other way to compute factorials?

(DEFINE FACT
(LAMBDA (N C)

(IF (= N 0) (C 1)
(FACT (- N 1)

(LAMBDA (A) (C (* N A)))))))

This looks iterative on the surface! but in fact it is recursive. Let’s compute (FACT 3
ANSWER), where ANSWER is a continuation which is to receive the result of FACT applied
to 3; that is, the last thing FACT should do is apply the continuation ANSWER to its result.

=> (FACT 3 ANSWER)
=> (IF (= 3 0) (ANSWER 1)

(FACT (- 3 1) (LAMBDA (A) (ANSWER (* 3 A)))))
=> (FACT (- 3 1) (LAMBDA (A) (ANSWER (* 3 A))))
=> (FACT 2 (LAMBDA (A) (ANSWER (* 3 A))))
=> (IF (= 2 0) ((LAMBDA (A) (ANSWER (* 3 A))) 1)

(FACT (- 2 1)
(LAMBDA (A)

((LAMBDA (A) (ANSWER (* 3 A)))
(* 2 A)))))

=> (FACT (- 2 1)
(LAMBDA (A)

((LAMBDA (A) (ANSWER (* 3 A)))
(* 2 A))))

=> (FACT 1
(LAMBDA (A)

((LAMBDA (A) (ANSWER (* 3 A)))
(* 2 A))))

420 SUSSMAN AND STEELE

=> (IF (= 1 0)
((LAMBDA (A)

((LAMBDA (A) (ANSWER (* 3 A)))
(* 2 A)))

1)
(FACT (- 1 1)

(LAMBDA (A)
((LAMBDA (A)

((LAMBDA (A)
(ANSWER (* 3 A)))

(* 2 A)))
(* 1 A)))))

=> (FACT (- 1 1)
(LAMBDA (A)

((LAMBDA (A)
((LAMBDA (A)

(ANSWER (* 3 A)))
(* 2 A)))

(* 1 A))))
=> (FACT 0

(LAMBDA (A)
((LAMBDA (A)

((LAMBDA (A)
(ANSWER (* 3 A)))

(* 2 A)))
(* 1 A))))

=> (IF (= 0 0)
((LAMBDA (A)

((LAMBDA (A)
((LAMBDA (A)

(ANSWER (* 3 A)))
(* 2 A)))

(* 1 A)))
1)
(FACT (- 0 1)

((LAMBDA (A)
((LAMBDA (A)

((LAMBDA (A)
((LAMBDA (A)

(ANSWER (* 3 A)))
(* 2 A)))

(* 1 A)))
(* 0 A))))))

INTERPRETER FOR EXTENDED LAMBDA CALCULUS 421

=> ((LAMBDA (A)
((LAMBDA (A)

((LAMBDA (A)
(ANSWER (* 3 A)))

(* 2 A)))
(* 1 A)))

1)
=> ((LAMBDA (A)

((LAMBDA (A)
(ANSWER (* 3 A)))

(* 2 A)))
(* 1 1))

=> ((LAMBDA (A)
((LAMBDA (A)

(ANSWER (* 3 A)))
(* 2 A)))

1)
=> ((LAMBDA (A)

(ANSWER (* 3 A)))
(* 2 1))

=> ((LAMBDA (A)
(ANSWER (* 3 A)))

2)
=> (ANSWER (* 3 2))
=> (ANSWER 6) Whew!

Note that we have computed factorial of 3 (and are about to give this result to the con-
tinuation), but in the process no combination with FACT in the first position has ever been
reduced except as the outermost expression. If we think of the computation in terms of
evaluation rather than substitution, this means that we never returned a value from any ap-
plication of the function FACT! It is always possible, if we are willing to specify explicitly
what to do with the answer, to perform any calculation in this way: rather than reducing
to its value, it reduces to an application of a continuation to its value (cf. [4]). That is,
in this continuation-passing programming style,6 a function always “returns” its result by
“sending” it to another function. This is the key idea.
We also note that by our previous observation, this program is essentially recursive in

that the expressions produced as intermediate results of the substitution semantics grow
to a size proportional to the depth. In fact, the same information is being stored in the
nested continuations produced by this program as in the nested products produced by the
traditional recursion—what to do with the result.
One might object that this FACT is not the same kind of object as the previous definition,

since we can’t use it as a function in the same manner. Note, however, that if we supply the
continuation (LAMBDA (X) X), the resulting combination (FACT 3 (LAMBDA (X) X))
will reduce to 6, just as with traditional recursion.
One might also object that we are using function values—the primitives =, -, and * are

functions which return values, for example. But this is just a property of the primitives;
consider a new set of primitives ==, --, and ** which accept continuations (indeed, let ==

422 SUSSMAN AND STEELE

take two continuations: if the predicate is TRUE call the first, otherwise call the second).
We can then define FACT as follows:

(DEFINE FACT
(LAMBDA (N C)

(== N 0
(LAMBDA () (C 1))
(LAMBDA ()

(-- N 1
(LAMBDA (M)

(FACT M (LAMBDA (A) (** A N C)))))))))

We can see here that no functional application returns a value in a computation of factorial
in this situation. We believe that functional usage, where applicable (pun intended), is more
perspicuous than continuation-passing. We shall therefore use functional primitives such
as * rather than ** wherever possible, keeping in mind that we could use ** instead if we
wished.

4. Some Implementation Issues

The key problem is efficiency. Although it is easy to build an inefficient interpreter which
straightforwardly performs expression substitutions, such an interpreter performs much
unnecessary copying of intermediate expressions. The standard solution to this problem
is to use an auxiliary structure, called the environment, which represents a set of virtual
substitutions. Thus, when evaluating an expression of the form

((LAMBDA <vars> <body>) <args>) in environment E

instead of reducing it by performing

Subst[<args> <vars> <body>]

we reduce it to

<body> in environment E’=Pairlis[<vars> <args>* E]

where Pairlis creates a new environment E’ in which the <vars> are logically paired
with (i.e., “bound to”) the corresponding <args>* (the precise meaning of <args>* will
be explained presently), and in which any variables not in <vars> are bound as they were
in E.
When using environments, it is necessary to keep them straight. For example. the

following expression should manage to evaluate to 7:

(((LAMBDA (X) (LAMBDA (Y) (+ X Y))) 3) 4)

A substitution interpreter would cause the free occurrence of X in the inner lambda
expression to be replaced by 3 before applying that lambda expression to 4. An interpreter
which uses environments must arrange for the expression (+ X Y) to be evaluated in an
environment such that X is bound to 3 and Y is bound to 4. This implies that when the inner

INTERPRETER FOR EXTENDED LAMBDA CALCULUS 423

lambda expression is applied to 4, there must be associated with it an environment in which
X is bound to 3. In order to solve this problem we introduce the notion of a closure [11, 14]
which is a data structure containing a lambda expression, and an environment to be used
when that lambda expression is applied to arguments. We will notate a closure using the
beta construct (our own notation, but isomorphic to the LISP funarg construct) as follows:

(BETA (LAMBDA <vars> <body>) <environment>)

When a lambda expression is to be evaluated, because it was passed as an argument, it
evaluates to a closure of that lambda expression in the environment it is evaluated in (i.e.,
the environment it was passed from):

(LAMBDA <vars> <body>) in environment E

evaluates to

(BETA (LAMBDA <vars> <body>) E) in environment E

When a closure is to be applied to some arguments:

((BETA (LAMBDA <vars> <body>) E1) <args>) in environment E2

this is performed by reducing the application expression to

<body> in environment Pairlis[<vars> <args in E2> E1]

That is, any free variables in the closed lambda expression refer to the environment as of
the time of closure (E1), not as of the time of application (E2), whereas the arguments are
evaluated in the application environment as expected.
This notion of closure has gone by many other names in other contexts. In LISP, for

example, such a closure has been traditionally known as a funarg. ALGOL has several
related ideas. Every ALGOL procedure is, at the time of its invocation, essentially a
“downward funarg”. In addition, expressions which are passed by name instead of by value
are closed through the use of mechanisms called thunks [8]. It turns out that an actor (other
than a cell or a serializer) is also a closure. Hewitt [17] describes an actor as consisting of
a script, which is code to be executed, and a set of acquaintances, which are other actors
which it knows about. We contend that the script is in fact identical to the lambda expression
in a closure, and that the set of acquaintances is in effect an environment. As an example,
consider the following code for cons taken from [17] (cf. [4]):

[CONS ≡
(≡> [=A =B]
(CASES
(≡> FIRST?
A)
(≡> REST?
B)
(≡> LIST?
YES)))]

424 SUSSMAN AND STEELE

When the form (CONS X Y) is evaluated, the result is an (evaluated) CASES statement,
which is a receiver ready to accept a message such as “FIRST?” or “REST?”. This resulting
receiver evidently knows about the actors X and Y as being bound to the variables A and
B; it is evidently a closure of the cases script plus a set of acquaintances which includes X
and Y (as well as “FIRST?” and “REST?” and: “YES”, for example; PLASMA considers
such “constant acquaintances” to be part of the set, whereas in SCHEME we might prefer
to consider them part of the script). Once we realize that it is a closure and nothing more,
we can see easily how to express the same semantics in SCHEME:

(DEFINE CONS
(LAMBDA (A B)

(LAMBDA (M)
(IF (EQ M ’FIRST?) A

(IF (EQ M ’REST?) B
(IF (EQ M ’LIST?) ’YES

(ERROR ’|UNRECOGNIZED MESSAGE - CONS|
M
’WRNG-TYPE-ARG)))))))

Note that we have used explicit eq tests on the incoming message rather than the implicit
pattern-matching of the cases statement, but the underlying semantics of the approach are
the same.
There are several important consequences of closing every lambda expression in the

environment from which it is passed (i.e., in its “lexical” or “static” environment). First,
the axioms of lambda calculus are automatically preserved. Thus, referential transparency
is enforced. This in turn implies that there are no “fluid” variable bindings (as there are
in standard stack implementations of LISP such as MacLISP). Second, the upward funarg
problem [14] requires that the environment structure be potentially tree-like. Finally, the
environment at any point in a computation can never be deeper than the lexical depth of
the expression being evaluated at that time; i.e., the environment contains bindings only
for variables bound in lambdas lexically surrounding the expression being evaluated. This
is true even if recursive functions are involved. It follows that if list structures are used to
implement environments, the time to look up a variable is proportional only to the lexical
distance from the reference to the binding and not to the depth of recursion or any other
dynamic parameter. Therefore it is not necessarily as expensive as many people have
been led to believe. Furthermore, it is not even necessary to scan the environment for the
variable, since its value must be in a known position relative to the top of the environment
structure; this position can be computed by a compiler at compile time on the basis of lexical
scope. The tree-like structure of an environment prevents one from merely indexing into it,
however; it is necessary to cdr down it. (Some ALGOL compilers use a similar technique
involving base registers pointing to sets of variables for each level of block nesting; it
is necessary to determine the base pointer for the block desired for a variable reference,
but then the variable is at a known offset from the base address.) It also follows that an
iterative programming style will lead to no net accumulation of environment structures
in the interpreter. The recursive style, with or without continuation-passing, will lead to
accumulation of environment structures as a function of the recursion depth, not because
any environment becomes arbitrarily deep, but rather because at each level of recursion it is

INTERPRETER FOR EXTENDED LAMBDA CALCULUS 425

necessary to save the environment at that point. It is saved by the interpreter in the case of
traditional recursion, so that computation can continue in the correct environment on return
from the recursive call; it is saved as part of the continuation closure in continuation-passing.

Another problem is concerned with control. This is a consequence of the functional
interpretation of the lambda calculus, i.e., the view that an “expression” (combination)
represents a value to be “returned” (to replace the combination) to its “caller” (the process
evaluating the combination containing the original one). The interpreter must provide
for correctly resuming the caller when the caller has returned its value. The state of the
computation at the time of the call must therefore be preserved. We see, then, that part of the
state of the computation must be (a pointer to) the preserved state of its caller; we will call
this component of the state the clink [12, 1]. Just before the evaluation of a subexpression,
the state of the current computation, including the clink, must be gathered together into a
single data structure, which we will call a frame; the clink is then altered to point to this new
frame. The evaluation of the subexpression then returns by restoring the state of the process
from the current clink. Note that the value of the subexpression had better not be part of
the state, for otherwise it would be lost by the state restoration. Thus, we only build a new
frame if further computation would result in losing information which might be necessary.
This only occurs if we must somehow return to that state. This in turn can only occur if we
must evaluate an expression whose value must be obtained in order to continue computation
in the current state.
This implies that no frame need be created in order to apply a lambda expression to its

arguments. This in turn implies that the iterative and continuation-passing styles lead to
no net creation of frames, because they are implemented only in terms of explicit lambda
applications, whereas the recursive style leads to the creation of one net frame per level of
recursive depth, because the recursive invocation involves the evaluation of a expression
containing the recursive lambda application as a subexpression.
A clink in a lambda calculus-based interpreter is in fact equivalent to a low-level default

continuation as created by the PLASMA interpreter. Such a continuation is a (closed)
lambda expression of one argument whose script will carry on the computation after receiv-
ing the value of the subexpression. The clink mechanism is therefore not necessary, if we
are willing to transform all our programs into pure continuation-passing style. We could
do this explicitly, by requiring the user to write his programs in this form; or implicitly, as
PLASMA does, by creating these one-argument continuations as necessary, passing them
as hidden extra arguments to lambda expressions which behave like functions. On the other
hand, we may think of a clink as a highly optimized continuation, whose “script” is that
carefully coded portion of the lambda calculus interpreter which restores the frame and then
carries on. We find this notion useful in defining a primitive, CATCH (named for the CATCH
construct in MacLISP [13]), for “hairy control structure”, similar to Reynolds’ ESCAPE
operator [16], which makes these low-level continuations available to the user. Note that
PLASMA has a similar facility for getting hold of the low-level continuations, namely the
“≡≡>” receiver construct.
Another problem for the implementor of an interpreter of a lambda calculus based lan-

guage is the order in which to perform reductions. There are two standard orders of
evaluation (and several other semi-standard ones, which we will not consider here). The
first is Normal Order, which corresponds roughly to ALGOL’s “call by name”, and the

426 SUSSMAN AND STEELE

second is Applicative Order, which corresponds roughly to ALGOL’s “call by value” or to
LISP functional application.
Under a call-by-name implementation. the <args>* mentioned above are in fact the

actual argument expressions, each paired with the environment E. The evaluator has two
additional rules:

1. when a variable x is to be evaluated in environment E1, then its associated expression-
environment pair [A, E2] (which is equivalent to an ALGOL thunk) is looked up in E1,
and then A is evaluated in E2.

2. when a “primitive operator” is to be applied, its arguments must be evaluated at that
time, and then the operator applied in a call-by-value manner.

Under a call-by-value implementation, the <args>* are the values of the argument ex-
pressions; i.e., the argument expressions are evaluated in environment E, and only then
is the lambda expression applied. Note that this leads to trouble in defining conditionals.
Under call-by-name one may define predicates to return (LAMBDA (X Y) X) for TRUE
and (LAMBDA (X Y) Y) for FALSE. and then one may simply write

((= A B) <do this if TRUE> <do this if FALSE>)

This trick depends implicitly on the order of evaluation. It will not work under call-by-
value, nor in general under any other reductive order except Normal Order. It is therefore
necessary to introduce a special primitive operator (such as “if”) which is applied in a
call-by-name manner. This leads us to the interesting conclusion that a practical lambda
calculus interpreter cannot be purely call-by-name or call-by-value; it is necessary to have
at least a little of each.
There, is a fundamental problem, however, with using Normal Order evaluation in a

lambda calculus interpreter, which is brought out by the iterative programming style. We
already know that no net frames are created by iterative programs, and that no net environ-
ment structures are created either. The problem is that under a call-by-name implementation
there may be a net thunk structure created proportional in size to the number of iteration
steps. This problem is inherent inNormal Order, becauseNormal Order substitution seman-
tics exhibit the same phenomenon of increasing expression size. Therefore iteration cannot
be effectively modeled in a call-by-name interpreter. An alternative view is that a call-by-
name interpreter remembers more than is logically necessary to perform the computations
indicated by the original expressions. This is indicated by the fact that the Applicative
Order substitution semantics lead to expressions of fixed maximum size independent of the
number of iteration steps.
It turns out that this conflict between call-by-name and iteration is resolved by the use

of continuation-passing. If we use a pure continuation-passing programming style, then
Normal Order and Applicative Order are the same order! In pure continuation-passing no
combination is ever a subcombination of another combination. (This is the justification for
the factmentioned above that no clinks are needed if pure continuation-passing style is used.)
Thus, if we wish to model iteration in pure lambda calculus without even an if primitive,
we can use Normal Order substitutions and express the iteration in the continuation-passing
style.

INTERPRETER FOR EXTENDED LAMBDA CALCULUS 427

Under any reductive order, whether Normal Order, Applicative Order, or any other order,
it is in practice convenient to introduce a means of terminating the evaluation process on a
given form; in order to do this we introduce three different and equally useful notions. The
first is the primitive operator such as +; the evaluator can apply such an operator directly,
without substituting a lambda expression for the operator and reducing the resulting form.
The second is the self-evaluating constant; this is used for primitive objects such as numbers,
which effectively behave as if always “bound to themselves” in any environment. The third
is the quoting function, which protects its argument from reductions so that it is returned as
is; this is used for treating forms as data in the usual LISP manner.
These three ideas are not logically necessary, since the evaluation processwill (eventually)

terminate when no reductions can be made, but they are a great convenience for introducing
various functions and data into the lambda calculus. Note too that some are easily defined in
terms of the others; for example, instead of letting 3 be a self-evaluating constant, we could
let 3 be a primitive operator of no arguments which returned 3, or we could merely quote it;
similarly, instead of quoting forms we could let forms be a self-evaluating data type, as in
MDL [5] (better known as MUDDLE), written with different parentheses. Because, as we
have said, these constructs are all strictly for convenience, we will not strive for any kind
of minimality, but will continue to use all three notions in our interpreter, as we already
have in our examples. We provide an interface so that all MacLISP SUBRS may be used
as primitive operators; we define numbers to be self-evaluating; and we will use QUOTE to
quote forms as in LISP (and thus we may use the “’” character as an abbreviation)

One final issue which the implementor of a lambda calculus based interpreter should
consider is that of extensions to the language, such as primitives for side effects, multipro-
cessing, and synchronization of processes. Note that these are ideas which are very hard, if
not impossible, to model using the substitution semantics of the lambda calculus, but which
are easily incorporated in other semantic models, including the environment interpreter
and, perhaps more notably, the ACTORS model [6, 7]. The fundamental problem with
modelling such concepts using substitution semantics is that substitution produces copies
of expressions, and so cannot model the notion of sharing very well. In an interpreter which
uses environments, all instances of a variable scoped in a given environment refer to the
same virtual substitution contained in that environment, and somay be thought of as sharing
a value cell in that environment. We can take advantage of this sharing by introducing a
primitive operator which modifies the contents of a value cell; since all occurrences refer to
the same value cell, changing the contents of that value cell will change the result of future
references to that value cell (i.e., occurrences of the variable which invoke the virtual sub-
stitution mechanism). Such a primitive operator would then be similar to the SET function
of LISP, or the := of ALGOL. We include such an operator, ASET, in our interpreter.
Introducing multiprocessing into the interpreter is fairly straightforward; all that is neces-

sary is to introduce a mechanism for time-slicing the interpreter among several processes.
One can even model this in substitution semantics by supposing that there can be more than
one expression and at each step an expression is randomly chosen to perform a reduction
within. (On the other hand, synchronizing of the processes is very hard to model using
substitution semantics!)
Since our value cells effectively solve the readers and writers problem (i.e., reads and

writes of variables are indivisible) no more than our side effect primitive is necessary to

428 SUSSMAN AND STEELE

synchronize our processes [3, 9, 10]. However, the techniques for achieving synchroniza-
tion using only := are quite cumbersome and opaque. It behooves the implementor to
make things easier for the user by introducing a more tractable synchronization primi-
tive (e.g., P+V or monitors or path expressions or . . .). Machine language programmers
have long known that the easiest way to synchronize processes is to turn off the schedul-
ing clock during the execution of critical code. We have introduced such a primitive,
EVALUATE!UNINTERRUPTIBLY (which is a sort of “over-anxious serializer”, because it
locks out the whole world), into our interpreter.

5. The Implementation of the Interpreter

Here we present a real live SCHEME interpreter. This particular version was written pri-
marily for expository purposes; it works, but not as efficiently as possible. The “production
version” of SCHEME is coded somewhat more intricately, and runs about twice as fast as
the interpreter presented below.
The basic idea behind the implementation is think machine language. In particular,

we must not use recursion in the implementation language to implement recursion in the
language being interpreted. This is a crucial mistake which has screwed many language
implementations (e.g., Micro-PLANNER [18]). The reason for this is that if the imple-
mentation language does not support certain kinds of control structures, then we will not be
able to effectively interpret them. Thus, for example, if the control frame structure in the
implementation language is constrained to be stack-like, then modelling more general con-
trol structures in the interpreted language will be very difficult unless we divorce ourselves
from the constrained structures at the outset.
It will be convenient to think of an implementation machine which has certain operations,

which are “micro-coded” in LISP; these are used to operate on various “registers”, which
are represented as free LISP variables. These registers are:

EXP
The expression currently being evaluated.

ENV
A pointer to the environment in which to evaluate **EXP**.7

CLINK
Apointer to the frame for the computation of which the current one is a subcomputation.

PC
The “program counter”. As each “instruction” is executed, it updates **PC** to point
to the next instruction to be executed.

VAL
The returned value of a subcomputation. This register is not saved and restored in
CLINK frames; in fact, its sole purpose is to pass values back safely across the
restoration of a frame.

INTERPRETER FOR EXTENDED LAMBDA CALCULUS 429

UNEVLIS, **EVLIS**
These are utility registers which are part of the state of the interpreter (they are saved
in **CLINK** frames). They are used primarily for evaluation of components of
combinations, but may be used for other purposes also.

TEM
A super-temporary register, used for random purposes and not saved across interrupts
or in **CLINK** frames. It therefore may not be used to pass information between
“instructions” of the “machine”, and so is best thought of as an internal hardware
register.

QUEUE
A list of all processes other than the one currently being interpreted.

TICK
A magic register which a “hardware clock” sets to T every so often, used to drive the
scheduler.

PROCESS
This register always contains the name of the process currently swapped in and running.

The following declarations and macros are present only to make the MacLISP compiler
happy. and to make the version number of the SCHEME implementation available in the
global variable VERSION.

(DECLARE (SPECIAL **EXP** **UNEVLIS** **ENV** **EVLIS** **PC** **CLINK**
VAL **TEM** **TOP** **QUEUE** **TICK** **PROCESS**
QUANTUM
VERSION LISPVERSION))

(DEFUN VERSION MACRO (X)
(COND (COMPILER-STATE (LIST ’QUOTE (STATUS UREAD)))

(T (RPLACA X ’QUOTE)
(RPLACD X (LIST VERSION))
(LIST ’QUOTE VERSION))))

(DECLARE (READ))

(SETQ VERSION ((LAMBDA (COMPILER-STATE) (VERSION)) T))

The function SCHEME initializes the system driver. The two SETQ’s merely set up version
numbers. The top level loop itself is written in SCHEME, and is a LABELS which binds
the function **TOP** to be a read-eval-print loop. The LISP global variable **TOP**
is initialized to the closure of the **TOP** function for convenience and accessibility to
user-defined functions.

(DEFUN SCHEME ()
(SETQ VERSION (VERSION) LISPVERSION (STATUS LISPVERSION))
(TERPRI)
(PRINC ’|This is SCHEME |)
(PRINC VERSION)
(PRINC ’| running in LISP |)

430 SUSSMAN AND STEELE

(PRINC LISPVERSION)
(SETQ **ENV** NIL **QUEUE** NIL

PROCESS (CREATE!PROCESS ’(**TOP** ’|SCHEME - Toplevel|)))
(SWAPINPROCESS)
(ALARMCLOCK ’RUNTIME **QUANTUM**)
(MLOOP))

(SETQ **TOP**
’(BETA (LAMBDA (**MESSAGE**)

(LABELS ((**TOP1**
(LAMBDA (**IGNORE1** **IGNORE2** **IGNORE3**)

(**TOP1** (TERPRI) (PRINC ’|==> |)
(PRINT (SET ’* (EVALUATE (READ))))))))

(**TOP1** (TERPRI) (PRINC **MESSAGE**) NIL))
NIL))

When the LISP alarmclock tick occurs, the global register **TICK** is set to T.
QUANTUM, the amount or runtime between ticks, is measured in micro-seconds.

(DEFUN SETTICK (X) (SETQ **TICK** T))

(SETQ **QUANTUM** 1000000. ALARMCLOCK ’SETTICK)

MLOOP is the main loop of the interpreter. It may be thought of as the instruction dispatch
in the micro-code of the implementation machine. If an alarmclock tick has occurred,
and interrupts are allowed, then the scheduler is called to switch processes. Otherwise the
“instruction” specified by **PC** is executed via FASTCALL.

(DEFUN MLOOP ()
(DO ((**TICK** NIL)) (NIL) ;DO forever

(AND **TICK** (ALLOW) (SCHEDULE))
(FASTCALL **PC**)))

FASTCALL is essentially a FUNCALL optimized for compiled “microcode”. Note the way
it pulls the SUBR property to the front of the property list if possible for speed.

(DEFUN FASTCALL (ATSYM)
(COND ((EQ (CAR (CDR ATSYM)) ’SUBR)

(SUBRCALL NIL (CADR (CDR ATSYM))))
(T ((LAMBDA (SUBR)

(COND (SUBR (REMPROP ATSYM ’SUBR)
(PUTPROP ATSYM SUBR ’SUBR)
(SUBRCALL NIL SUBR))

(T (FUNCALL ATSYM))))
(GET ATSYM ’SUBR)))))

Interrupts are allowed unless the variable *ALLOW* is bound to NIL in the current envi-
ronment. This is used to implement the EVALUATE!UNINTERRUPTIBLY primitive.

(DEFUN ALLOW ()
((LAMBDA (VCELL)

(COND (VCELL (CADR VCELL))
(T T)))

(ASSQ ’*ALLOW* **ENV**)))

INTERPRETER FOR EXTENDED LAMBDA CALCULUS 431

Next comes the scheduler. It is apparently interrupt-driven, but in fact is not. The key
here is to think microcode! There is one place in the microcoded instruction interpretation
loop which checks to see if there is an interrupt pending; in our “machine”, this occurs in
MLOOP, where **TICK** is checked on every cycle. This is another case where we must
beware of using toomuch of the power of the host language; just as wemust avoid using host
recursion directly to implement recursion, so we must avoid using host interrupts directly
to implement interrupts. We may not modify any register during a host language interrupt,
except one (such as **TICK**) which is specifically intended to signal interrupts. Thus, if
we were to add an interrupt character facility to SCHEME similar to that in MacLISP [13],
the MacLISP interrupt character function would merely set a register like **TICK** and
dismiss; MLOOP would eventually notice that this register had changed and dispatch to the
interrupt handler. All this implies that the “microcode” for the interrupt handlers does not
itself contain critical code that must be protected from host language interrupts.
When the scheduler is invoked, if there is another process waiting on the process queue,

then the current process is swapped out and put on the end of the queue, and a new process
swapped in from the front of the queue. The process stored on the queue consists of an
atom which has the current frame and **VAL** register on its property list. Note that
the **TEM** register is not saved, and so cannot be used to pass information between
instructions.

(DEFUN SCHEDULE ()
(COND (**QUEUE**

(SWAPOUTPROCESS)
(NCONC **QUEUE** (LIST **PROCESS**))
(SETQ **PROCESS** (CAR **QUEUE**)

QUEUE (CDR **QUEUE**))
(SWAPINPROCESS)))

(SETQ **TICK** NIL)
(ALARMCLOCK ’RUNTIME **QUANTUM**))

(DEFUN SWAPOUTPROCESS ()
((LAMBDA (**CLINK**)

(PUTPROP **PROCESS** (SAVEUP **PC**) ’CLINK)
(PUTPROP **PROCESS** **VAL** ’VAL))

CLINK))

(DEFUN SWAPINPROCESS ()
(SETQ **CLINK** (GET **PROCESS** ’CLINK)

VAL (GET **PROCESS** ’VAL))
(RESTORE))

Primitive operators are LISP functions, i.e., SUBRs, EXPRs, and LSUBRs.

(DEFUN PRIMOP (X) (GETL X ’(SUBR EXPR LSUBR)))

SAVEUP conses a new frame onto the **CLINK** structure. It saves the values of all
important registers. It takes one argument, RETAG, which is the instruction to return to
when the computation is restored.

432 SUSSMAN AND STEELE

(DEFUN SAVEUP (RETAG)
(SETQ **CLINK**

(LIST **EXP** **UNEVLIS** **ENV** **EVLIS** RETAG **CLINK**)))

RESTORE restores a computation from the CLINK. The use of TEMP is a kludge to optimize
the compilation of the “microcode”.

(DEFUN RESTORE ()
(PROG (TEMP)

(SETQ TEMP (OR **CLINK**
(ERROR ’|PROCESS RAN OUT - RESTORE|

EXP
’FAIL-ACT))

EXP (CAR TEMP)
TEMP (CDR TEMP)
UNEVLIS (CAR TEMP)
TEMP (CDR TEMP)
ENV (CAR TEMP)
TEMP (CDR TEMP)
EVLIS (CAR TEMP)
TEMP (CDR TEMP)
PC (CAR TEMP)
TEMP (CDR TEMP)
CLINK (CAR TEMP))))

AEVAL is the central function of the SCHEME interpreter. This “instruction” expects
EXP to contain an expression to evaluate, and **ENV** to contain the environment for
the evaluation. The fact that we have arrived here indicates that **PC** contains ’AEVAL,
and so we need not change **PC** if the next instruction is also to be AEVAL. Besides
the obvious objects likes numbers, identifiers, LAMBDA expressions, and BETA expressions
(closures), there are also several other objects of interest. There are primitive operators
(LISP functions); AINTs (which are to SCHEME as FSUBRs like COND are to LISP); and
AMACROs, which are used to implement DO, AND, OR, COND, BLOCK, etc.8

(DEFUN AEVAL ()
(COND ((ATOM **EXP**)

(COND ((NUMBERP **EXP**)
(SETQ **VAL** **EXP**)
(RESTORE))
((PRIMOP **EXP**)
(SETQ **VAL** **EXP**)
(RESTORE))
((SETQ **TEM** (ASSQ **EXP** **ENV**))
(SETQ **VAL** (CADR **TEM**))
(RESTORE))
(T (SETQ **VAL** (SYMEVAL **EXP**))

(RESTORE))))
((ATOM (CAR **EXP**))
(COND ((SETQ **TEM** (GET (CAR **EXP**) ’AINT))

INTERPRETER FOR EXTENDED LAMBDA CALCULUS 433

(SETQ **PC** **TEM**))
((EQ (CAR **EXP**) ’LAMBDA)
(SETQ **VAL** (LIST ’BETA **EXP** **ENV**))
(RESTORE))
((SETQ **TEM** (GET (CAR **EXP**) ’AMACRO))
(SETQ **EXP** (FUNCALL **TEM** **EXP**)))
(T (SETQ **EVLIS** NIL

UNEVLIS **EXP**
PC ’EVLIS))))

((EQ (CAAR **EXP**) ’LAMBDA)
(SETQ **EVLIS** (LIST (CAR **EXP**))

UNEVLIS (CDR **EXP**)
PC ’EVLIS))

(T (SETQ **EVLIS** NIL
UNEVLIS **EXP**
PC ’EVLIS))))

We come to EVLIS when a combination is encountered. The intention is to evaluate
each component of the combination and then apply the resulting function to the resulting
arguments. We use the register **UNEVLIS** to hold the list of components yet to be
evaluated, and the register **EVLIS** to hold the list of evaluated components. We assume
that these have been set up by AEVAL. Note that in the case of an explicit LAMBDA expression
in the CAR of a combination **UNEVLIS** is initialized to be the list of unevaluated
arguments and **EVLIS** is initialized to be the list containing the lambda expression.
EVLIS checks to see if there remain any more components yet to be evaluated. If not, it

applies the function. Note that the primitive operators are applied using the LISP function
APPLY. Note also how a BETA expression controls the environment in which its body is
to be evaluated. DELTA expressions are CATCH tags (see CATCH). It is interesting that the
evaluated components are collected in the reverse order from that which we need them in,
and so we must reverse the list before applying the function. Do you see why we must not
use side effects (e.g., the NREVERSE function) to reverse the list? Think about CATCH!
If there remain components yet to be evaluated, EVLIS saves up a frame, so that execution

can be resumed at EVLIS1 when the evaluation of the component returns with a value. It
then sets up **EXP** to point to the component to be evaluated and dispatches to AEVAL.9

(DEFUN EVLIS ()
(COND ((NULL **UNEVLIS**)

(SETQ **EVLIS** (REVERSE **EVLIS**))
(COND ((ATOM (CAR **EVLIS**))

(SETQ **VAL** (APPLY (CAR **EVLIS**) (CDR **EVLIS**)))
(RESTORE))
((EQ (CAAR **EVLIS**) ’LAMBDA)
(SETQ **ENV** (PAIRLIS (CADAR **EVLIS**)

(CDR **EVLIS**)
ENV)

EXP (CADDAR **EVLIS**)
PC ’AEVAL))

((EQ (CAAR **EVLIS**) ’BETA)
(SETQ **ENV** (PAIRLIS (CADR (CADAR **EVLIS**))

(CDR **EVLIS**)

434 SUSSMAN AND STEELE

(CADDAR **EVLIS**))
EXP (CADDR (CADAR **EVLLS**))
PC ’AEVAL))

((EQ (CAAR **EVLIS**) ’DELTA)
(SETQ **CLINK** (CADAR **EVLIS**))
(RESTORE))
(T (ERROR ’|BAD FUNCTION - EVARGLIST|

EXP
’FAIL-ACT))))

(T (SAVEUP ’EVLIS1)
(SETQ **EXP** (CAR **UNEVLIS**)

PC ’AEVAL))))

The purpose of EVLIS1 is to gobble up the value, passed in the **VAL** register, of the
subexpression just evaluated. It saves this value on the list in the **EVLIS** register, pops
off the unevaluated subexpression from the **UNEVLIS** register, and dispatches back to
EVLIS.

(DEFUN EVLIS1 ()
(SETQ **EVLIS** (CONS **VAL** **EVLIS**)

UNEVLIS (CDR **UNEVLIS**)
PC ’EVLIS))

Here is the code for the various AINTs. On arrival at the instruction for an AINT, **EXP**
contains the expression whose functional position contains the name of the AINT. None of
the arguments have been evaluated, and no new control frame has been created. Note that
each AINT is defined by the presence of an AINT property on the property list of the LISP
atom which is its name. The value of this property is the LISP function which is the first
“instruction” of the AINT.
EVALUATE is similar to the LISP function EVAL; it evaluates its argument, which should

result in a s-expression, which is then fed back into the SCHEME expression evaluator
(AEVAL).

(DEFPROP EVALUATE EVALUATE AINT)

(DEFUN EVALUATE ()
(SAVEUP ’EVALUATE1)
(SETQ **EXP** (CADR **EXP**)

PC ’AEVAL))

(DEFUN EVALUATE1 ()
(SETQ **EXP** **VAL**

PC ’AEVAL))

IF evaluates its first argument, with a return address of IF1. IF1 examines the resulting
VAL, and gives either the second or third argument to AEVAL depending on whether
the **VAL** was non-NIL or NIL.

(DEFPROP IF IF AINT)

INTERPRETER FOR EXTENDED LAMBDA CALCULUS 435

(DEFUN IF ()
(SAVEUP ’IF1)
(SETQ **EXP** (CADR **EXP**)

PC ’AEVAL))

(DEFUN IF1 ()
(COND (**VAL** (SETQ **EXP** (CADDR **EXP**)))

(T (SETQ **EXP** (CADDDR **EXP**))))
(SETQ **PC** ’AEVAL))

As it was in the beginning, is now, and ever shall be: QUOTEwithout end. (Amen, amen.)

(DEFPROP QUOTE AQUOTE AINT)

(DEFUN AQUOTE ()
(SETQ **VAL** (CADR **EXP**))
(RESTORE))

LABELSmerely feeds its second argument to AEVAL after constructing a fiendishly clever
environment structure. This is done in two stages: first the skeleton of the structure is
created, with null environments in the closures of the bound functions; next the created
environment is clobbered into each of the closures.

(DEFPROP LABELS LABELS AINT)

(DEFUN LABELS ()
(SETQ **TEM** (MAPCAR ’(LAMBDA (DEF)

(LIST (CAR DEF)
(LIST ’BETA (CADR DEF) NIL)))

(CADR **EXP**)))
(MAPC ’(LAMBDA (VC) (RPLACA (CDDADR VC) **TEM**)) **TEM**)
(SETQ **ENV** (NCONC **TEM** **ENV**)

EXP (CADDR **EXP**)
PC ’AEVAL))

We now come to the multiprocess primitives.
CREATE!PROCESS temporarily creates a new set of machine registers (by the lambda-

binding mechanism of the host language), establishes the new process in those registers,
swaps it out, and returns the new process id; returning causes the old machine registers to
be restored.

(DEFUN CREATE!PROCESS (EXP)
((LAMBDA (**PROCESS** **EXP** **ENV** **UNEVLIS** **EVLIS**

PC **CLINK** **VAL**)
(SWAPOUTPROCESS)
PROCESS)

(GENSYM)
EXP
ENV
NIL
NIL

436 SUSSMAN AND STEELE

’AEVAL
(LIST NIL NIL NIL NIL ’TERMINATE NIL)
NIL))

(DEFUN START!PROCESS (P)
(COND ((OR (NOT (ATOM P)) (NOT (GET P ’CLlNK)))

(ERROR ’|BAD PROCESS -- START!PROCESS| **EXP** ’FAIL-ACT)))
(OR (EQ P **PROCESS**) (MEMQ P **QUEUE**)

(SETQ **QUEUE** (NCONC **QUEUE** (LIST P))))
P)

(DEFUN STOP!PROCESS (P)
(COND ((MEMQ P **QUEUE**)

(SETQ **QUEUE** (DELQ P **QUEUE**)))
((EQ P **PROCESS** (TERMINATE)))

P)

TERMINATE is an internal microcode routine which terminates the current process. If the
current process is the only one, then all processes have been stopped, and so a newSCHEME
top level is created; otherwise TERMINATE pulls the next process off the scheduler queue
and swaps it in. Note that we cannot use SWAPINPROCESS because a RESTOREwill happen
in EVLIS as soon as TERMINATE completes (this is a very deep global property of the
interpreter, and a fine source of bugs; much care is required).

(DEFUN TERMINATE ()
(COND ((NULL **QUEUE**)

(SETQ **PROCESS**
(CREATE!PROCESS ’(**TOP** ’|SCHEME - QUEUEOUT|))))

(T (SETQ **PROCESS** (CAR **QUEUE**)
QUEUE (CDR **QUEUE**))))

(SETQ **CLINK** (GET **PROCESS** ’CLINK))
(SETQ **VAL** (GET **PROCESS** ’VAL))
’TERMINATE-VALUE)

EVALUATE!UNINTERRUPTIBLY merely binds the variable *ALLOW* to NIL, and then
evaluates its argument. This is why this primitive follows the scoping rules for variables!

(DEFPROP EVALUATE!UNINTERRUPTIBLY EVALUATE!UNINTERRUPTIBLY AINT)

(DEFUN EVALUATE!UNINTERRUPTIBLY ()
(SETQ **ENV** (CONS (LIST ’*ALLOW* NIL) **ENV**)

EXP (CADR **EXP**)
PC ’AEVAL))

DEFINE closes the function to be defined in the null environment, and installs the closure
in the LISP value cell.

(DEFPROP DEFINE DEFINE AINT)

(DEFUN DEFINE ()
(SET (CADR **EXP**) (LIST ’BETA (CADDR **EXP**) NIL))
(SETQ **VAL** (CADR **EXP**))
(RESTORE))

INTERPRETER FOR EXTENDED LAMBDA CALCULUS 437

ASET looks up the specified variable in the current environment, and clobbers the value
cell in the environment with the new value. If the variable is not bound in the current
environment, the LISP value cell is set. Note that ASET does not need to be an AINT, since
it does not fool with order of evaluation; all it needs is access to the “machine register”
ENV.

(DEFUN ASET (VAR VALU)
(SETQ **TEM** (ASSQ VAR **ENV**))
(COND (**TEM** (RPLACA (CDR **TEM**) VALU))

(T (SET VAR VALU)))
VALU)

CATCH binds the tag variable to a DELTA expression which contains the current CLINK.
When AEVAL applies such an expression as a function (of one argument), it makes the
CLINK in the DELTA expression be the **CLINK**, places the value of the argument
in **VAL**, and does a RESTORE. The effect is to return from the CATCH expression with
the argument to the DELTA expression as its value (can you see why?).

(DEFPROP CATCH ACATCH AINT)

(DEFUN ACATCH ()
(SETQ **ENV** (CONS (LIST (CADR **EXP**) (LIST ’DELTA **CLINK**))

ENV)
EXP (CADDR **EXP**)
PC ’AEVAL))

PAIRLIS is as in the LISP 1.5 Programmer’s Manual [11].10

(DEFUN PAIRLIS (X V Z)
(DO ((I X (CDR I))

(J Y (CDR J))
(L Z (CONS (LIST (CAR I) (CAR J)) L)))
((AND (NULL I) (NULL J)) L)
(AND (OR (NULL I) (NULL J))

(ERROR ’|WRONG NUMBER OF ARGUMENTS - PAIRLIS|
EXP
’WRNG-NO-ARGS))))

AMACROs are fairly complicated beasties, and have very little to do with the basic issues
of the implementation of SCHEME per se, so the code for them will not be given here.
AMACROs behave almost exactly like MacLISP macros [13].
This is the end of the SCHEME interpreter!

6. Acknowledgments

This paper would not have happened if Sussman had not been forced to think about lambda
calculus by having to teach 6.031, nor would it have happened had not Steele been forced
to understand PLASMA by morbid curiosity.

438 SUSSMAN AND STEELE

This work developed out of an initial attempt to understand the actorness of actors. Steele
thought he understood it, but couldn’t explain it; Sussman suggested the experimental
approach of actually building an “ACTORS interpreter”. This interpreter attempted to
intermix the use of actors and LISP lambda expressions in a clean manner. When it was
completed, we discovered that the “actors” and the lambda expressions were identical
in implementation. Once we had discovered this, all the rest fell into place, and it was
only natural to begin thinking about actors in terms of lambda calculus. The original
interpreter was call-by-name for various reasons having to do with 6.031; we subsequently
experimentally discovered how call-by-name screws iteration, and rewrote it to use call-by-
value. Note well that we did not bring forth a clean implementation in one brilliant flash
of understanding; we used an experimental and highly empirical approach to bootstrap our
knowledge.
Wewish to thank the staff of 6.031,MikeDertouzos, and SteveWard, for precipitating this

intellectual adventure. Carl Hewitt spent many hours explaining the innards and outards of
PLASMA to Steele over the course of several months; MarilynMcClennan was also helpful
in this respect. Brian Smith and Richard Zippel helped a lot. We wish to thank Seymour
Papert, Ben Kuipers, Marvin Minsky, and Vaughan Pratt for their excellent suggestions.

Notes

These notes were not part of the original paper. We have added them to illuminate certain points that would
otherwise not be clear to readers in 1998. We should also remark that we have reformatted the original text for
journal publication, making use of a greater variety of type faces and styles as well as changing the line breaks
and indentation of the text and, where necessary, of the code. We have also quietly corrected minor errors in
punctuation throughout the paper, but we have not changed any of the words, though we were sorely tempted
to change most of the occurrences of “which” to “that” to accord with the more rigorous rules of usage that we
adopted in our later writings.—GJS/GLS, 1998

1. In addition to the funny structure of this program there are a number of strange features and jokes that are
incidental to its structure. Though this program worked correctly, PROGN is a MacLISP procedure that
should not have appeared here. We should have used BLOCK to be consistent with the rest of the SCHEME
examples. PROGN worked because it is a MacLISP LSUBR and thus its arguments were evaluated in left-to-
right order. PROGN returns its last argument, and so it is equivalent to BLOCK as far as the value produced,
but BLOCK executes its last form “tail-recursively” and PROGN does not. That difference does not matter
for this implementation of SQRT, because the expression (LOOPTAG LOOPTAG) always performs a
nonlocal transfer of control, so the procedurePROGN is never actually invoked—indeed, we could just as well
have used + or APPEND or any other procedure that accepts four arguments! Another strange feature of this
program is the use of the “fast” MacLISP floating-point–specific math procedures -$, *$, etc. Of course,
this program ran so slowly under our SCHEME interpreter that it was of no consequence for us to use these
obscure primitives! Finally, the comment;JFCL refers to the fastest instruction on theDECPDP-10 that does
nothing. Indeed, we came very close to writing JRST (the fastest unconditional PDP-10 jump instruction)
instead of GOTO in the last comment; we fully expected our original intended audience, our colleagues at the
MIT Artificial Intelligence Laboratory, to be fluent in PDP-10 assembly language. Our intention was to be
terse, not cryptic.

2. In the initial definition of SCHEME, we tried to make each primitive construct as simple as possible. In
modern versions of SCHEME, the body of a LAMBDA expression is indeed an implicit BLOCK.

3. MIT-AI was the name of the DEC PDP-10 computer that wewere using for our research. DDTwas a command
shell and assembly language debugger rolled into one.

4. There is a tiny joke here: wewrote(EVAL’ (UREAD FOO BAR DSK LOSER)) instead of themore
customary (EVAL ’(UREAD FOO BAR DSK LOSER)) so that the operation could be pronounced
“evalquote”.

INTERPRETER FOR EXTENDED LAMBDA CALCULUS 439

5. Both (THV x) and ?x are bits of syntax from the MicroPLANNER language, which used pattern matching
as an essential part of its control structure.

6. We believe that this was the first occurrence of the term “continuation-passing style” in the literature. It has
turned out to be an important concept in source code analysis and transformation for compilers and other
metaprogramming tools. It has also inspired a set of other “styles” of program expression.

7. That is, the expression in **EXP**.
8. In the following code, the special treatment for a LAMBDA expression as the first form of a combination

is inessential. Such expressions would be treated correctly if the special case (the penultimate clause of the
outermost COND) were eliminated. The special case was added as a speed-up hack, to avoid the construction
of a BETA closure. This is discussed further in the next note.

9. Here again the special treatment of a LAMBDA expression as a function object is a semantically inessential
speedup hack. If the LAMBDA expression had been evaluated in AEVAL to make a BETA closure, the
environment that would be extracted by EVLIS from that closure would be exactly the environment in
ENV. The special handling of LAMBDA expressions in EVLIS exploits this fact.

10. Actually, this is false. We used LIST to make the pairs, where the original PAIRLIS used CONS; and, of
course, the original PAIRLIS was not written using the MacLISP new-style DO loop!

References

1. Bobrow, Daniel G. andWegbreit, Ben. Amodel and stack implementation of multiple environments. CACM
16, 10, pages 591–603, October 1973.

2. Church, Alonzo. The calculi of lambda conversion. Annals of Mathematics Studies Number 6, Princeton
University Press, 1941. Reprinted by Klaus Reprint Corp. (New York), 1965.

3. Dijkstra, Edsger W. Solution of a problem in concurrent programming control. CACM 8,9, page 569,
September 1965.

4. Fischer, Michael J. Lambda calculus schemata. In Proceedings of ACM Conference on Proving Assertions
about Programs, SIGPLAN Notices, January 1972.

5. Galley, S.W. and Pfister, Greg. The MDL language. In Programming Technology Division Document
SYS.11.01. Project MAC, MIT (Cambridge), November 1975.

6. Greif, Irene. Semantics of Communicating Parallel Processes. Ph.D. thesis. Technical ReportMAC-TR-154,
Project MAC, MIT (Cambridge), September 1975.

7. Greif, Irene and Hewitt, Carl. Actor semantics of Planner-73. Technical Report Working Paper 81, MIT AI
Lab (Cambridge), 1975.

8. Ingerman, P.Z. Thunks—a way of compiling procedure statements with some comments on procedure
declarations. CACM 4,1, pages 55–58, January 1961.

9. Knuth, Donald E. Additional comments on a problem in concurrent programming control. CACM 9,5,
pages 321–322, May 1966.

10. Lamport, Leslie. A new solution of Dijkstra’s concurrent programming problem. CACM 17,8, pages
453–455, August 1974.

11. McCarthy, John, et al. LISP 1.5 Programmer’s Manual. The MIT Press (Cambridge), 1965.
12. McDermott, Drew V. and Sussman, Gerald Jay. The CONNIVER reference manual. Technical Report AI

Memo 295a, MIT AI Lab (Cambridge), January 1974.
13. Moon, David A. MACLISP Reference Manual, Revision 0. Project MAC, MIT (Cambridge), 1974.
14. Moses, Joel. The function of FUNCTION in LISP. Technical Report AI Memo 199, MIT AI Lab (Cam-

bridge), June 1970.
15. Project MAC, MIT. (Cambridge). Project MAC Progress Report XI (July 1973–July 1974), 1974.
16. Reynolds, John C. Definitional interpreters for higher order programming languages. In ACM Conference

Proceedings, 1972.
17. Smith, Brian C. and Hewitt, Carl. A PLASMA primer (draft). Technical report, MIT AI Lab (Cambridge),

October 1975.
18. Sussman, Gerald Jay, Winograd, Terry and Charniak, Eugene. Micro-PLANNER reference manual. Tech-

nical Report AI Memo 203A, MIT AI Lab (Cambridge), December 1971.

View publication statsView publication stats

